Читаем УРОЖАИ И ПОСЕВЫ полностью

«Письмо к…», ставшее первой главой книги «В погоне за стеками» (я написал его в феврале прошлого года, то есть немногим больше года назад), я мог бы счесть своей последней попыткой добиться от кого-нибудь из прежних друзей отклика на мои позднейшие идеи и мысли о математике. Так вышло, что письмо само собой перешло в записки - и возник мой первый за все это время (считая с 1970 г.) математический текст, предназначенный к публикации. На «Письмо…», на мой взгляд, с математической точки зрения весьма содержательное, я получил что-то вроде ответа лишь год спустя (ср. примечание (38)). И этот ответ оказался, в известном смысле, куда убедительнее, чем все прочие письма, какие я получал до тех пор от коллег-математиков. По нему одному я мог судить ясно и недвусмысленно о том, какие чувства по отношению к моей скромной персоне сделались нормой в кругу моих прежних друзей-математиков с тех пор, как я покинул математический мир. Я писал к этому человеку, обращаясь к нему, как к давнему другу, искренно, с сердечною теплотой. В ответном письме нарочито явственно прозвучала насмешка. Когда я прочел его, переживания недавних лет нахлынули на меня с новою силой. Тогда, раньше, я не раз замечал, что мои старые знакомые, и прежде всего друзья из «большого мира» математики, все чаще и чаще как бы отодвигались от меня, начинали относиться ко мне прохладнее. Но здесь речь идет уже не столько о личной дружбе, сколько об отношениях на «профессиональном» уровне, между коллегами. Среди более или менее «понимающих толк» математиков возникло и словно бы вошло в моду некое соглашение - и стало законом, как нечто само собой разумеющееся. Разумные люди сошлись на том, что математику в «блоках» по тысяче страниц каждый, да и все те понятия, которыми я забивал им голову в течение одного-двух десятилетий (46'47), в конце концов, не стоит принимать всерьез: эти, в сущности, пустяки и так в свое время наделали чересчур много шума. Довольно одних нагромождений «абстрактной чепухи» вокруг понятий схемы и этальных когомологии (которые все же иногда оказываются как нельзя кстати - увы, приходится признать); обо всем остальном, по крайней мере, можно позабыть с легким сердцем. Те же, кто, вопреки здравому смыслу, не говоря уже о правилах хорошего тона, все еще трубят в гротендикие трубы, подбирая их где-то на свалке, заслуживают участи своего учителя (даже если они формально не числятся у него в учениках). И поделом…

Конечно, новые и новые свидетельства тому, что соглашение (которое я только что описал «открытым текстом», без обиняков) работает безотказно, отнюдь не оставляли меня равнодушным. Начиная с 1976 г. (50), они все чаще и чаще долетали ко мне с разных сторон, и вот уже два-три года как идут ко мне отовсюду непрерывным потоком. В конце концов во мне проснулась бойцовская жилка, приутихшая и задремавшая было за последние десять лет. Мне захотелось броситься в рукопашную, приструнить этих молокососов, ни капли не смыслящих в чем бы то ни было, - словом, невеселые вести пробудили во мне самый что ни на есть дурацкий рефлекс быка, взбешенного видом красной тряпки. Казалось бы, иди спокойно своей дорогой - ан нет, он уж роет копытом землю, мотает головой и готов вот-вот броситься на «врага». Хотя мне все же думается, что этот «боевой инстинкт» - вещь неглубокая, и ради него одного я не сошел бы с дороги, не оставил бы

медитации. К тому же (и к счастью), занятие математикой само по себе достаточно увлекательно, и оно явно не сводится к тому, чтобы с заостренной палкой в боку, позабыв обо всем, гоняться за красной тряпкой. Конечно, все зависит от подхода к работе: в том, как я занимаюсь математикой, пожалуй, есть что-то от борьбы с ветряными мельницами. Идти наперекор общему представлению о математике, отказавшись от формального стиля работы, увлекаться лишь «несерьезными» вещами (в глазах коллег) - в этом есть и вызов, и самоутверждение перед лицом насмешки. Безусловно, в известном смысле я сам виноват в том, как меня и мои идеи сегодня встречают в математическом мире. В свое время мои друзья, вероятно, чувствовали во мне некое пренебрежение, обращенное если не к ним самим, то по крайней мере к математической среде в целом - а ведь они по-прежнему считали ее своей и принимали ее устои без оговорок. И та насмешка, которую я сегодня читаю на лицах и в письмах, родилась в ответ на мои собственные слова, на мое поведение в тот год, когда я уходил из мира математиков. Итак, уголок красной тряпки все же маячит впереди, и приходится признать, что я сбился с дороги. На моем пути у самого горизонта меня ждут совсем иные проводники.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика