Читаем УРОЖАИ И ПОСЕВЫ полностью

все люди так и живут без нее. Может быть, секрет или, скорее, великая тайна преподавания, «обучения» в полном смысле этого слова, и состоит в умении разбудить в человеке невинность, дремлющую где-то в глубине. Но нечего и толковать о возможности восстановить забытую связь в душе ученика, если ее недостает самому преподавателю. А если повезет, то «перейдет» к ученику от преподавателя вовсе не строгость, или невинность - ведь люди с нею рождаются. Нет, передать можно лишь уважение, молчаливое благоговение перед тем, чему обыкновенно отказывают в какой-либо значимости.

(23 ). Пожалуй, все-таки не единственный. Семь-восемь лет назад в моей жизни как математика появился другой «источник постоянной неудовлетворенности» - правда, выявить его все эти годы было гораздо сложнее. Но, как это бывает, недовольство собой накапливалось, одни и те же истории повторялись, и в конце концов стало ясно, откуда все это исходит. Причиной всему были постоянные неудачи в моей работе с учениками. Чем дальше, тем быстрее я терял надежду поправить положение, так что под конец готов был закричать во весь голос: «Довольно!» С тех пор я решил оставить всякую деятельность, связанную с «руководством научной работой». Раз или два я уже касался здесь этого вопроса и в какой-то момент надумал разобраться в нем более или менее основательно. По крайней мере, я сумел описать это чувство неудовлетворенности и изучить роль, которую оно сыграло в моем «возвращении в математику» (ср. §50, «Груз прошлого»).

(23 ). Этот ученик готовил со мной свой диплом целый год. Работа шла у него неровно: все это время он не мог избавиться от какого-то «напряжения». Это не мешало нашей (мне кажется, искренней) дружбе. И все же, была в нем какая-то нервическая робость. Могло показаться, будто он меня «побаивается» - но, конечно же, дело было совсем не в этом. Я бы, наверное, так ничего и не заметил, если бы он сам не сказал мне об этом однажды - чтобы объяснить, почему весь год ему так трудно давалась работа, словно бы на дороге стоял неодолимый барьер.

Как это бывало и с другими учениками, которые поначалу с увлечением погружались в созерцание той или иной геометрической «сущности», трудности начинались в тот момент, когда заходила речь о более формальной части труда, требующей тщательности и напряжения.

Примечания

То есть о том, чтобы записать черным по белому и по всей форме найденные утверждения или хотя бы попытаться уловить на слух те, которые формулировал я (предлагая принять их в качестве «основы языка», правил игры). «Школярские» инстинкты всегда тянут ученика назад, в привычную ситуацию, когда учитель назначает туманные, но в то же время обязательные правила игры, которые тебе приходится принимать как данность. Разъяснению эти правила не подлежат; стараться их понять - только время убьешь, да и незачем. Как же конкретно выглядели для него эти правила? Например, это могли быть «рецепты» семантики и исчисления в том виде, в каком их предлагают пособия для спецшкол (или любые другие современные учебники). К тому же, ученик всегда получал от преподавателя задачу в форме: «Докажите, что…» - вот вам и весь опыт математического «размышления». (Впрочем, я бы не сказал, что большинство профессиональных математиков, да и ученых вообще, в этом смысле чувствуют себя намного свободнее. В «большой науке» роль учителя играет всеобщее соглашение, которое и устанавливает правила игры - и это, опять-таки, непреложная данность. Это же соглашение определяет проблемы, над которыми ученым положено размышлять. А там уже, конечно, каждый волен выбирать себе задачу по вкусу. Можно даже позволить себе немного изменить ее в ходе работы, а то и выдумать новую - в рамках контекста…) Я уже отмечал, что смотрю на исследовательскую работу совершенно иначе. Ученика же мой совершенно непривычный для него подход, естественно, приводит в замешательство; отсюда - неуверенность, даже тревога. Она идет изнутри, но сам человек склонен искать ее источник где-то «снаружи». Вот почему это замешательство так часто переходит в «страх» перед преподавателем.

Таких трудностей у меня не бывало до семидесятого года - если не считать двух случаев, когда мне не удавалось сработаться с учеником, и мы с ним через несколько недель расставались. Еще, быть может (я не уверен), такая неловкость в свое время возникла между мной и «печальным учеником», о котором я как-то рассказывал. Не исключено, что он чувствовал себя словно бы прикованным к теме, которая его совершенно не увлекала. Впрочем, ничто ему не мешало ее сменить. В те годы у меня был и другой ученик, которого все время нашего общения мучила какая-то робость (о нем я также уже упоминал). Но у него, без сомнения, это было связано с какой-то посторонней причиной. Работа

Примечания

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика