Читаем УРОЖАИ И ПОСЕВЫ полностью

(31). Я думаю, здесь речь идет о «мужественной» («ян») стороне стремления к познанию - о том, что зовет нас искать, открывать, называть то, что является взгляду… Получив имя. мечта, захваченная в плен, уже не может вернуться в ничто (даже если в реальном мире новое знание сразу же похоронят, забудут, если за ним не пойдут к новым открытиям…). Форма «инь», женская - в открытости, в восприимчивости, в молчаливом ожидании знания, зреющего в самых сокровенных пластах нашего бытия; доступ мысли в эти края заказан. Открытость, а с ней внезапное прозрение, которое дарует согласие и лечит душевные раны, тоже приходят, как милость. На первый взгляд мимолетная, она, однако, затрагивает в душе глубокие струны. В эти редкие моменты какое-то знание без слов осеняет нас - и мне кажется, оно остается с нами, не в памяти, а где-то еще глубже, у самого дна души.

(32). Во времена, когда я еще занимался функциональным анализом, то есть до 1954 г., мне случалось подолгу и безрезультатно биться над одним и тем же вопросом. Исчерпав все свои идеи и не зная, как двигаться дальше, я все же упорствовал - и ходил кругами, в целом не двигаясь с места, хоть и видел, что там уже давно «не клюет». Так у меня было с «проблемой аппроксимации» в топологических векторных пространствах, с которой я мучился целый год. Разрешили ее лишь двадцать лет спустя, применив методы, о которых я не мог иметь представления в пятидесятые годы. Я ломал голову над этой проблемой не из настоящего желания узнать, а из пустого упрямства, не понимая толком, что же со мной происходит. То был тяжелый год - а ведь математика никогда до тех пор не бывала для меня в тягость. Этого опыта мне хватило, чтобы понять, что подолгу «томиться» над одной и той же задачей не имеет смысла: как только ты заметил, что работа застопорилась, нужно бросать ее и браться за что-то другое. Когда придет время, можно будет вернуться к этой задаче. Как правило, подходящий момент не заставляет себя ждать: просто вопрос должен сначала созреть сам по себе, без твоего непосредственного вмешательства. Достаточно того, что ты продолжаешь с воодушевлением работать над чем-то другим, пусть даже (на первый взгляд) весьма далеким от исходной темы. Я убежден, что, не отложи я тогда этой задачи, я не разрешил бы ее и за десять лет! С 1954 г. я завел себе привычку заниматься параллельно несколькими вещами, держать сразу много подков на огне. В каждый момент я работаю лишь с одной, но при этом всякий раз случается чудо: всем прочим, казалось бы, лежащим без дела, мой труд неизменно идет на пользу. Точно так же у меня всегда было с медитацией, хоть я и не добивался этого нарочно. По мере того, как размышление продвигалось, накапливались жгучие вопросы, требующие скорейшего разрешения; число их росло день ото дня…

(33). Это не значит, что те минуты, когда обходишься без пера и бумаги (или доски и мела, что то же), не важны для математического труда. Так бывает прежде всего в те «тонкие моменты», когда ты должен прочувствовать только что осенившую тебя интуитивную догадку, представить ее себе в общем контексте, «познакомиться» с нею непосредственнее и глубже, чем это возможно в «практической», поэтапной работе. Тщательный труд с пером и бумагой придет в свой черед: такое «неформальное» размышление как раз готовит для него почву. Размышляю я обычно перед сном или на прогулке. Времени на это уходит сравнительно немного: «формальная» математическая работа в этом смысле куда более емкая. В медитации (у меня, по крайней мере) все идет точно так же.

(34). «Объятие» здесь - отнюдь не метафора. Значение этого слова в повседневном языке отражает суть явления как нельзя лучше. Можно было бы возразить, и вполне резонно, что земля бы, наверное, давно обезлюдела, будь объятия без восхищения и в самом деле так уж бессильны. Крайний случай здесь - изнасилование: восхищения в нем, конечно же, нет, но ведь женщина может родить от насильника. Спору нет, такие объятия должны оставить след в душе ребенка, от них рожденного: «набор» свойств, который он примет, вступая в мир, отмечен недоброй печатью. И все же зачатие произойдет, новое существо появится на свет - это ли не признак мощи, это ли не творчество!

Примечания

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика