Читаем УРОЖАИ И ПОСЕВЫ полностью

же мне нашептывал все эти недели (если не месяцы) негласный закон, усвоенный мною Бог знает с каких времен. Вот что я слышу: «Неприлично выставлять напоказ удачи и срывы, опасливые шаги по ненадежной почве, вслепую, на ощупь вдоль стен, - словом, «грязное белье» труда открытия. И еще тише: «Неприлично публиковать записки о таких размышлениях, о том, как они проистекали на самом деле - точно так же, как было бы неприлично заниматься любовью на людях или после родов выставить напоказ окровавленные простыни…»

Этот запрет неумолим, он проникает всюду, как тот закон, что запрещает говорить вслух о вопросах пола. И только сейчас, когда я пишу это введение, я начинаю догадываться о том, как необычайно велика его сила. И лишь теперь я понимаю значение того невероятного обстоятельства, что нигде и никогда ни слова не говорится о том, как исследовательский труд проистекает на деле, о том, как ошеломляюще - по-детски - проста история любого открытия. Дорога, по которой люди приходят к открытию, не описана ни в одном докладе и ни в одной книге. О ней умалчивают, ею пренебрегают; отрицают ее существование, наконец. Так обстоят дела даже в относительно безобидной области научных открытий - когда, казалось бы, не собственный срам принародно обнажаешь, а тайны мироздания, слава Богу. Иными словами, такая (научная) «дерзость» доступна всем, ее плоды предназначены для общего пользования; тут нам (надо надеяться) нечего скрывать…

Если бы я решился последовать «нити», которая здесь легко прощупывается и могла бы послужить надежным проводником, то это, несомненно, завело бы меня намного дальше, чем те несколько сотен страниц, посвященных гомолого-гомотопической алгебре, которые я уже почти завершил и приготовил к печати.

4. Решительно, я выразился слишком мягко, когда, немного выше, уточнил не без осторожности, что «мой стиль изложения» изменился. Я даже отметил, что в этом нет ничего удивительного: в самом деле, вы же понимаете, если тринадцать лет кряду ничего не писать, а потом вдруг взяться за перо, волей-неволей что-то должно измениться… Разница в том, что раньше я «изъяснялся» (sic!), как все: сначала выполнял работу; затем, двигаясь от конца к началу, тщательно избавлялся от всевозможных помарок. По дороге возникали новые ошибки, подчас грубее тех, что я насажал с первого раза. Значит, опять переделывать - на второй, на третий, иногда на четвертый раз; результат дол

жен быть безупречен. В тексте не должно оставаться сколько-нибудь сомнительных мест; нельзя поддаваться соблазну тайком замести сор под диван (я вообще никогда не любил пыли в углах: зачем плутовать, раз уж берешься за веник). Но дело не только в этом. Если все условия соблюдены, то, когда читаешь окончательный вариант работы, создается (бесспорно, лестное) впечатление, будто ее автор (моя скромная персона, в данном случае) - сама воплощенная непогрешимость. Он безошибочно выхватывает из груды хаоса как раз «те самые» понятия, затем наилучшим возможным образом составляет из них утверждения, следующие друг за другом с ровным гудением хорошо смазанного мотора. И тут же, с глухим стуком, прямо с неба на бумагу валятся доказательства - каждое в самый подходящий момент!

Как же оценить влияние подобного стиля на ничего не подозревающего читателя? Что происходит в душе школьника, изучающего теорему Пифагора или квадратные уравнения? Какие мысли приходят в голову сотруднику исследовательского института или университета, в котором наделяют «высшим» (имеющий уши да слышит!) образованием, когда он бьется над статьей того или иного авторитетного коллеги? Такие ситуации в жизни каждого школьника, студента или даже научного работника, повторяются сотни, тысячи раз; легко себе представить, как они воздействуют на образ мыслей незадачливого читателя. Бытующие стереотипы - в семье, как и в любом другом окружении - лишь усугубляют эффект. Он проявляется на каждом шагу, и заметить это нетрудно, стоит лишь присмотреться. Он заключается в том, что у человека мало-помалу формируется убеждение в собственном ничтожестве по сравнению со значительностью и компетентностью «знающих» людей, тех, которые «все это делают».

С тем, чтобы это внутреннее убеждение как-то уравновесить, некоторые люди развивают в себе способность запоминать вещи, которые на самом деле им непонятны. Они могут, например, с виртуозной ловкостью перемножить две матрицы или «выстроить» по всем правилам сочинение на французском языке, с «тезами» и «антитезами»… Словом, речь идет о способности попугая (или ученой обезьяны), которая в наши дни ценится, как никогда. Она не помогает избавиться от ощущения собственной ничтожности, о котором я говорил; зато и вознаграждается она не куском сахара, как в цирке, а желанными дипломами и хорошей карьерой.

Самодовольство и обновление

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика