Читаем УРОЖАИ И ПОСЕВЫ полностью

Так и вышло, что я в тот день явился на Семинар с чемоданчиком, набитым листовками. Алэн Ласку помог мне их раздать в коридоре Института Анри Пуанкаре перед началом заседания и в «антракте» между двумя докладами. Из моих прежних товарищей всего двое-трое, прослышав о деле, связались со мной еще до того, как я приехал в Париж, и предложили свою поддержку; Алэн был в их числе (17). Если я правильно помню, он и сам составил небольшую листовку. Роже Годеман также написал воззвание под заголовком: «Лауреата Нобелевской премии - под арест?» Это было чрезвычайно любезно с его стороны, хотя ход его мыслей в этом случае был мне не вполне ясен. У него выходило так, будто нельзя обижать только «Лауреатов Нобелевской Премии»; зато уж с каким-нибудь дворником можно было обойтись как угодно!

В тот день на Семинаре Бурбаки и впрямь собралась целая толпа. Думаю, там были почти все мои прежние друзья и товарищи по Бурбаки. Институт Пуанкаре захлестнуло людским потоком, и моих старых знакомых в нем было не сосчитать. Повстречал я там и несколько своих бывших учеников. Я рад был случаю, впервые за десять лет без малого, увидеть их снова - хотя знакомых лиц было так много, что глаза разбегались в этой толпе! Зато пересчитать тех, кто остался со мною в конце, не составляло большого труда…

Довольно скоро, однако, стало ясно, что встреча после долгой разлуки выходит «не та». В крепких рукопожатиях, конечно же, не было недостатка, и восклицания в духе: «Ба, да и ты здесь! Каким ветром занесло?» - сыпались со всех сторон. Но какая-то смутная неловкость скрывалась за восторженными возгласами: потому ли, что они совсем не разделяли моих забот? Ведь они явились сюда, чтобы принять участие в определенной математической церемонии; такое событие случается трижды в год и, естественно, занимает их мысли. А может быть, дело было просто во мне - как бывшим семинаристам, прочно стоящим на высоких ступенях церковной иерархии, становится неуютно в при

Самодовольство и обновление

сутствии кюре, сложившего сан? Не берусь судить; вероятно, здесь повлияло и то и другое. Я, со своей стороны, не мог не отметить, как изменились лица вокруг - когда-то такие родные, даже любимые. Я не увидел в них прежней живости: они как бы застыли, опустились. У меня было ощущение, будто я ошибся дверью; меня окружали совершенно чужие люди, с которыми у меня не могло быть ничего общего. Мысль о том, что мы с ними живем в одном и том же мире, казалась мне странной и непонятной. Я искал поддержки, я ехал к ним, чтобы обрести братьев - и вот передо мною чужие, до странности равнодушные люди. Хорошо воспитанные, надо отдать им должное: над моей затеей никто не смеялся, и листовок, насколько я помню, не бросали на пол. Может быть, их даже прочли: помогло любопытство.

Это, однако, отнюдь не означало, что над жестоким законом нависла угроза отмены. Я получил свои пять минут (может быть, даже десять) чтобы рассказать о положении иностранцев (а значит, многих людей, которые были для меня как братья). Зал был полон. Мои коллеги вели себя тише, чем если бы я читал очередной доклад. Вероятно, я говорил без убеждения: я не слышал живого отклика в зале, не улавливал в воздухе, как в былые времена, сочувствия и тепла. Здесь, должно быть, многие спешат, - сказал я себе и поторопился закончить. Тем, кого заинтересовало мое сообщение, я предложил немного задержаться, чтобы обсудить дело подробнее.

Когда объявили конец собрания, у выходов сразу образовалась толпа. Очевидно, спешили все: на поезд (который должен был вот-вот отойти) или в метро. Им никак нельзя было опоздать! В одну-две минуты огромный зал опустел - чудеса, да и только… В пустынном, ярко освещенном зале Эрмита, считая Алэна и меня, осталось три человека. Третий был незнакомец - готов поспорить, один из тех самых иностранцев, о которых в обществе и упомянуть-то неловко! Только посмотрите на него: как водится, в сомнительной компании, и вдобавок - заведомо на незаконном положении! Мы не стали обсуждать сцену, только что разыгравшуюся у нас на глазах: она и без того была достаточно красноречива. Не исключено, что из нас троих лишь я один не верил своим глазам; как бы то ни было, мои друзья тактично воздержались от каких-либо замечаний. Очевидно, я оказался слишком наивен…

Остаток вечера мы провели у Алэна и его бывшей жены Жаклин, за обсуждением ситуации и разговорами о том, что еще можно было бы

предпринять. Кроме того, мы немного лучше познакомились, кое-что узнав друг о друге. Ни тогда, ни после я не попытался соотнести эту историю с моими воспоминаниями о прошлом. И все же, в тот день я понял без слов, что той среды, того мира, который я знал и любил, больше не существует. Живое тепло родного воздуха, которое я надеялся обрести вновь, унесло ветром - много лет тому, так что потерялся и след…

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика