Читаем УРОЖАИ И ПОСЕВЫ полностью

Уйдя из IHES, я тем самым как бы порвал со своим прошлым. Ведь именно в этом институте началась жизнь микрокосма, сформировавшегося вокруг меня в математике. Примечательно, что как раз на этот, важнейший для меня, момент моего разрыва с прошлым, пришелся первый случай открытого столкновения: давно зародившееся у одного из моих учеников раздражение (по отношению ко мне) вышло наружу. Конечно же, весь эпизод в целом оказался из-за этого еще горше, еще болезненней: как если бы тяжелые роды по стечению обстоятельств проходили в особенно трудных условиях. Я, захваченный врасплох, не понимал тогда смысла того, что происходило у меня на глазах; разумеется, сейчас события тех времен мне представляются в совершенно ином свете. Долгое время меня, в мыслях о прошлом, не покидал горький осадок - след той печальной неожиданности. И однако, не позднее, чем летом того же года, мой невеселый уход вдруг явился мне, как освобождение. Словно от небольшого толчка распахнулась настежь тяжелая дверь - и взгляду внезапно предстал новый, неожиданный мир, зовущий к открытию. И с тех пор каждое новое пробуждение несло мне, в свою очередь, и новое освобождение: вдруг обнаруживаешь в своей душе несброшенный балласт - еще одну стену, за которой ты не бывал, но которую можно сломать. А там - неизвестное, все это время скрывавшееся за ложной маской привычного, то есть чего-то, что на первый взгляд «и так ясно».

Но, как бы то ни было, огорчение остается огорчением. Конечно, мне как математику в отношениях с коллегами не раз и не два случалось переживать неприятные минуты. Но постоянный источник досады, неудовлетворенности, в моей жизни до сих пор только один - та сдержанная, любезная, непримиримая враждебность, вот уже пятнадцать лет неотступно следующая за мной по пятам (23). Наверное, я мог бы назвать его платой за свое первое освобождение - и за все те, что позднее пришли вслед за ним. Но я слишком хорошо знаю, что зрелость и внутренняя свобода не достаются за плату; в графы «прихода» или «расхода» не вносят такие слова. Иными словами: когда зерно созрело, и закончен сбор урожая, «расходов» и потерь не бывает. То, что казалось потерянным, оборачивается прибылью, идет в «приход» у тебя на глазах. Я же, как видно, еще не собрал своего урожая: дописывая эти самые строки, я чувствую, что солнце еще высоко, и работа

Самодовольство и обновление

не завершена.

29. Итак, 1970 г. для меня отмечает некий поворотный пункт в моей жизни. Ученики, которые начали приходить ко мне после этого «поворота», сильно отличались от тех, с кем я работал раньше. Да и сама среда провинциального университета была совсем не похожа на наше прежнее окружение. Всего двое студентов готовили под моим руководством кандидатские диссертации. Остальные только писали курсовые работы или защищали дипломы. Следовало бы упомянуть здесь и тех студентов (их было довольно много), которые посещали мои «вводные курсы». На этих семинарах я старался дать слушателям представление о том, что такое научная работа. Получая возможность поразмыслить самостоятельно, без оглядки на учебники, студенты зачастую начинали задумываться над самыми неожиданными вопросами. Иногда им удавалось находить интересные, оригинальные методы их разрешения. Я заметил, что в факультативных мероприятиях - курсах, семинарах - активнее всего участвуют первокурсники. Напротив, студенты, уже проучившиеся несколько лет, под влиянием университетской обстановки утрачивают определенную свежесть восприятия. Их намного сложнее заинтересовать чем бы то ни было, они не любят смотреть на живые вещи своими глазами, предпочитая суррогаты из университетских пособий. Среди студентов, посещавших мои семинары, многие явно подавали надежды; они могли бы стать превосходными математиками. Ввиду общей обстановки в математическом мире я, однако, воздерживался от того, чтобы порекомендовать им эту дорогу - хотя их, похоже, влекло к математике, и не исключено, что они отличились бы на этом поприще.

Как правило, студенты приходили ко мне (на тот или иной факультативный семинар), чтобы подготовить диплом магистра. Тогда они обычно учились у меня не дольше года. Наши отношения, в целом, становились сердечными и непринужденными с первых же дней. Так у меня было и раньше с «официально признанными» учениками - всегда, если не считать одержимого навязчивой «робостью» молодого ученого, о котором я уже рассказал (23). Различие (далеко не единственное!) заключалось в том, что в Монпелье мое общение с учениками не всегда ограничивалось совместной научной работой. Как правило, мы с ними больше знали друг о друге и говорили уже не только о математике (23v). Благодаря этому и недомолвок между нами почти не

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика