Читаем УРОЖАИ И ПОСЕВЫ полностью

со стороны, а это, конечно же, меняет дело. Так что оба раза (а может быть, ситуация повторялась трижды, не помню точно), когда он посылал мне свою работу в ожидании комментариев, я отвечал ему в равно холодной и обескураживающей манере. Если не ошибаюсь, я ни разу не согласился как рекомендовать статью этого ученого к публикации в научном журнале, так и войти в состав жюри, когда он защищал свою диссертацию (кажется, я припоминаю, что такой вопрос тоже поднимался). Это выглядело так, как если бы я над ним откровенно насмехался. Вдобавок ко всему, работы, которые я от него получал, были вполне осмысленными и полезными с математической точки зрения. Думаю, что они были выполнены тщательно, с настоящим душевным усердием. И уж во всяком случае у меня нет ни малейших оснований предполагать, что идеи, развиваемые в этих работах, он позаимствовал из чужой головы. Да, у меня они появились намного раньше - но в то время они еще отнюдь не «носились в воздухе». Они считались (более или менее) «хорошо известными» лишь в самом узком кругу математиков, который составляли Серр, Картье, я и еще один-два человека. И для меня остается совершенно непостижимым то, что этот молодой ученый (он, конечно, в конце концов защитился и нашел себе хорошее место в одном из университетов) продолжал ко мне обращаться - несмотря на то, что я с ним всякий раз так «холодно обходился». Кажется, он на меня совсем не сердился. Я даже припоминаю, как он однажды выразил мне свое удивление перед тем, что я так старался держать его на расстоянии; очевидно, он просто не понимал, что происходит. И, наверное, он в самом деле очень старался понять, если спросил моих объяснений! На вид он казался совсем юношей; у него была красивая голова, наводившая на мысли об античной скульптуре. Черты лица - скорее мягкие, неброские, из тех, что свидетельствуют о внутренней, душевной умиротворенности их обладателя… Сейчас, когда я впервые попытался передать словами свое общее ощущение от его лица - и от характера, от того, как он себя держал - я вдруг понял, что он был очень похож на моего «терпеливого друга», того самого, о котором я уже говорил. Они, кажется, могли бы быть братьями - мой приятель и ровесник, по характеру такой весельчак, и тот юноша, двадцатью годами младше; он, пожалуй, выглядел серьезнее, но унылым его уж точно не назовешь. Не исключено, что это странное сходство сыграло свою роль в нашей истории: обезоруженный проявлениями самой искренней

дружбы со стороны первого из них, я перенес свое (незаслуженное!) пренебрежение к нему на второго - в общем, незнакомого мне человека. А ведь, если судить беспристрастно, он был, без сомнения, очень приятный, располагающий к себе юноша; он лишь старался сделать, как лучше, и никогда не позволял себе быть навязчивым. Каким же я стал толстокожим за эти годы, если его искренность и прямодушие не тронули меня тогда, не растопили ненужного льда между нами. Он обратился ко мне, говоря доверчиво и открыто; у меня же не нашлось для него простой улыбки…

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика