Призадумавшись, однако, я понял, что книга «В погоне за стеками», моя первая публикация после четырнадцатилетнего молчания, написана как раз в духе «грезы наяву» — невозможной и неосуществленной. Она как бы предваряет теорию мотивов, служит ее временной заменой. Конечно, у этой книги своя тема, на первый взгляд настолько далекая от «мотивов», насколько это вообще возможно в математике. К тому же, по моим представлениям, тема мотивов находится на грани того, что можно разработать подручными средствами, в то время как все, что связано со стеками, не должно вызывать особенных трудностей. Однако, стоит лишь внимательно посмотреть на эти две темы, чтобы понять, насколько поверхностны эти мнимые различия (3)
. Трудиться над каждой из этих теорий и значит «грезить наяву»: стиль работы один и тот же, а все остальное не так уж важно. На случай, если это звучит слишком вызывающе, скажем иначе: это работа с широкими, еще не до конца определившимися концепциями; это поиск нужных формулировок путем последовательных приближений, «нащупывание» координат. Так путешественник, плутая ночью, вычисляет местонахождение ориентиров: в темноте их не различить, но, если он выберет верный путь, впереди его ждет вполне реальная цель. При этом отдельные догадки собираются в единое представление о местности, внутренне согласованное и достаточно точное, чтобы можно было доверять ему, как хорошей карте. Если говорить о теме этой книги, то здесь общее видение картины уже сложилось. Теперь сверить его с действительностью — чисто техническая задача. Безусловно, для того чтобы ее разрешить, потребуется самая серьезная работа, а с ней — немалая доля мастерства и воображения. В этой работе будут свои непредвиденные повороты, неожиданно открывающиеся перспективы, — все, что отличает такой труд от пустой рутины (или «длинного упражнения», как сказал бы Андре Вейль).Словом, это будет та самая работа, которую я сам в свое время делал и переделывал тысячи раз. С тех пор я выучил ее, как свои пять пальцев; кажется, в оставшиеся мне годы можно было бы заняться чем-то другим. Сейчас, после долгого перерыва, я возобновляю свои математические занятия лишь с тем, чтобы «грезить наяву» — и думаю, что не нашел бы для своих сил лучшего приложения. А впрочем, когда я делал свой выбор, меня не особенно вдохновляла мысль о том, что подобные затраты должны быть оправданы (если считать, что забота о рентабельности вообще может кого-нибудь вдохновлять). Я просто шел за мечтой — за грезой из грез. И ее одну стоит благодарить за все находки, что ждут меня на этой дороге.
7. Наследие Галуа
Мечта, как известно, вещь ненаучная. Однако исподволь она все равно проникает в научные миры; наверное, оттого, что творчество как таковое без нее невозможно. Гонят ее отовсюду, но по-разному; похоже, что мы, математики, по меньшей мере третье тысячелетие кряду стараемся больше других. В других областях человеческого знания (включая так называемые «точные» науки — физику, например), мечту все-таки иногда терпят, а то и приветствуют (это зависит от эпохи). Конечно, для нее подбирают более солидные имена: «теория», «предположение», «гипотеза» (как, скажем, знаменитая «гипотеза о существовании атома», родившаяся из мечты — виноват, предположения Демокрита)… Перемена статуса, переход от мечты-которую-не-смеют-называть-по-имени к «научной истине» происходит как-то незаметно, по общему соглашению — по мере того, как число «обращенных» в новую веру постепенно растет. В математике же, напротив, подобное превращение почти всегда осуществляется вдруг, как по мановению волшебной палочки — как только появляется доказательство (4)
. В те времена, когда понятий определения и доказательства (в современном смысле этого слова) еще не было в математике, некоторые другие, заведомо важные математические объекты влачили довольно сомнительное существование. Например, многие ученые (в том числе Паскаль) не верили в «отрицательные» числа; позднее, «мнимые» числа также не признавались за реальный объект. (Что до двух последних понятий, то их названия, до сих пор используемые в математике, сами по себе достаточно красноречивы.)Понятия определения, утверждения, доказательства, математической теории постепенно становились отчетливей; в известном смысле, это принесло нам немало пользы. Передать те или иные мысли словами бывает непросто, но теперь мы научились применять бесхитростные — и удивительно мощные инструменты, позволяющие нам без лишних мучений достигать своей цели. Стало возможным сформулировать «невыразимое», если с должной строгостью следовать законам современного математического языка. Надо сказать, что именно эта возможность и увлекала меня в математике с самого детства. Это, как чудо: поймать в сети языка сущность того или иного объекта в математическом мире — кажется, такую неясную, ускользающую, как будто словам, сорвавшись с губ, ее уже не догнать… И смотреть, как на бумагу ложится вполне осязаемая, совершенно отчетливая формулировка.