Обусловленные этим преимущества аплизии столь же высоко ценятся исследователями нейронов, как и возможность использовать гигантские аксоны кальмара для изучения потенциала действия, и были с самого начала очевидны для Арванитаки, Таука и их сотрудников. Однако в последние 25 лет ведущим исследователем процессов научения и памяти у аплизии стал Эрик Кэндел, который вначале работал вместе с Тауком в Париже, а потом перебрался в Нью-Йорк. Многие из полученных им результатов будут обсуждаться в главе 9. Сейчас скажу только, что во время многолетних споров, иногда весьма острых, с теми, кто занимался психологией млекопитающих, Кэндела и его коллег интересовал один вопрос: способны ли аплизии обучаться?
Сравнительно легко было показать, что этим животным свойственны привыкание и сенситизация. Много внимания уделялось изучению рефлексов, лежащих в основе втягивания органов дыхания (жабры и сифона, которые обычно выступают над поверхностью тела) в мантийную полость в ответ на прикосновение к животному. Многократное прикосновение приводило к уменьшению силы и частоты этой реакции, которое иногда сохранялось неделями. Этот эффект может быть формой привыкания, но он столь продолжителен, что были основания рассматривать его по меньшей мере как форму неассоциативного научения. Только в начале восьмидесятых годов были получены убедительные данные в пользу условнорефлекторной природы втягивания жабры и сифона у аплизий. В этих экспериментах безусловным раздражителем служило резкое воздействие на хвостовую область тела, которое сразу же приводило к энергичной реакции жабры и сифона, а условным стимулом было слабое тактильное раздражение сифона, которое обычно вызывает лишь вялое его втягивание. После повторных сочетаний двух стимулов первый из них вызывал такую же сильную реакцию, как и второй[13]
[8].Конструкторская проблема обособления мозга от пищеварительной системы была решена на уровне позвоночных животных, у которых был создан внутренний скелет на основе позвоночника. В результате черепная полость могла вмещать теперь увеличенный головной ганглий (головной мозг), а нервы, идущие от него к остальным частям тела, оказались внутри позвоночного канала, образовав спинной мозг. Ганглии, не включенные в эту центральную нервную систему, потеряли прежнее значение, а степень их автономии уменьшилась. Но, несмотря на столь радикальные структурные изменения, принципы клеточной организации нервной системы с ее нейронами, синапсами и нейронными ансамблями у позвоночных остались теми же, что и у беспозвоночных. Это в основном относится и к биохимии нервной системы. Такая ситуация несколько сродни тем многообразным изменениям транспортных средств с двигателем внутреннего сгорания, которые они претерпели со времени изобретения этого двигателя в конце прошлого века. Автомобили, мотоциклы и самолеты могут вбирать в себя самые удивительные конструкторские решения, оборудоваться улучшенными моторами, ежегодно менять эффективность, стиль и отделку, но использовать прежний принцип работы двигателя с его цилиндрами и клапанами, топливо на основе нефтепродуктов и колеса для движения по грунту.
С появлением позвоночных изменились не элементы, из которых построена нервная система, и не основные пути получения и, преобразования энергии, а принцип ее организации в целом; система обладает полностью сформировавшимися механизмами научения и памяти, которые свойственны всем млекопитающим, в том числе (в наиболее развитых формах) приматам, а среди них, конечно, и человеку. Вопрос о том, сохраняется ли (несмотря на радикальные конструктивные изменения) сходство клеточных механизмов научения и памяти у беспозвоночных и позвоночных, или же они в корне различны, требует дальнейшего изучения. Его обсуждению будет посвящена часть следующей главы. Задача же данного раздела, состоявшая в том, чтобы проследить эволюцию явлений, сходных с памятью у животных (исключая человека), выполнена.
Глава 8 Молекулы памяти