Вот почему создание внеземной станции явится неизбежным этапом в эволюции звездоплавания. Центр проблемы переносится сюда. Все дело – в одолении этого этапа. Если такая задача будет разрешена, остальное станет сравнительно легким делом. Внеземная база для межпланетных перелетов – одна из главнейших технико-астрономических задач, стоящих перед деятелями звездоплавания.
Глава 17
Опыты с новыми ракетами
От теоретических рассуждений перейдем наконец к практике. Достигнуто ли что-нибудь фактически в области осуществления смелых замыслов теоретиков звездоплавания? Да, достигнуто, немногое, правда, но все же начальные практические шаги на пути к завоеванию мирового пространства уже сделаны, и притом вполне успешно.
Первые экспериментальные работы относились еще к пороховым ракетам, которые должны были служить целям звездоплавания. В 1919 г. профессор физики Вустерского университета (Калифорния) Роберт Годдард опубликовал отчет о своих исследованиях ракет. Работы его открывают собой новую главу в истории ракетного летания. Американский ученый добился того, что устроенные им ракеты использовали не 2 % энергии пороха, как все прежние, а в 31 раз больше – 62 %.
Благодаря целесообразно подобранной форме ракетного сопла пороховые газы, вытекающие из ракеты, имели скорость 2300–2400 м/с. Материалом для сопла служила хромоникелевая сталь. Ракета получила устойчивость в полете благодаря вращающейся головке, которая приводилась в движение струями газов, вытекающих из ее косых каналов; головка ракеты играла роль волчка, который, как известно, стремится сохранить неизменным положение оси своего вращения.
Третье усовершенствование, введенное Годдардом в устройство ракет, заключается в осуществлении идеи ступенчатости. Сущность ее состоит в том, что ракета делается составной из нескольких отдельных ракет; зажигаются они – конечно, автоматически – одна после другой, по мере расходования заряда предыдущей; отработавшие ракеты автоматически же сбрасываются, чтобы не служить мертвым грузом.
О некоторых результатах своих опытных работ профессор Годдард рассказал в популярной заметке, напечатанной им в одном американском журнале. Читателю небезынтересно будет познакомиться с ней.
Почему ракета летит в пустоте
(Popular Science Monthly, 1924)
При обсуждении проекта ракеты, предназначенной для высоких подъемов, немало сомнений вызывает возможность для ракеты двигаться в почти пустом пространстве: возражают, что извергаемым газам в пустоте «не от чего оттолкнуться». Однако, вопреки распространенному мнению, взрывание в пустоте производит на ракету большее действие, нежели в воздухе. А если бы воздух был значительно плотнее, то взрыв не давал бы и вовсе никакого эффекта. На самом деле единственное, что заставляет ракету двигаться вперед, – это газы, вытекающие из ее трубки. Если мальчик, стоя на роликовых коньках, бросит какой-нибудь груз назад, он будет сам откинут вперед; и чем быстрее брошен груз, тем больший толчок вперед испытает бросающий. В пустоте газы из ракеты вытекают скорее, и потому ракета в пустом пространстве должна двигаться еще быстрее, чем в воздухе. Известно, что при взрыве патрона в револьвере происходит отдача. В аппарате, изображенном на рис. 37, разряжается холостой патрон револьвера, могущего вращаться вокруг оси: под колоколом воздушного насоса можно убедиться, что отдача происходит в пустоте. Когда же патрон взрывается в пространстве, где воздух настолько сгущен, что пороховые газы вытекать не могут, револьвер не испытывает отдачи.
Чтобы подтвердить сказанное, я зажигал ракету так, что газы устремлялись в резервуар, где воздух разрежен в 1500 раз. Ракета С (рис. 38) отягчена свинцовой муфтой