Самая знаменитая – и самая важная – из таких историй началась в конце 1980-х в одной из начальных школ города Брентфорда (де-факто это часть Лондона). Элизабет Ожер, которая занималась там с детьми, отстающими от школьной программы, обратила внимание на то, что сразу несколько учеников из одной семьи демонстрируют сходные нарушения речи. Они начинали говорить поздно, произносили слова неразборчиво (например, bu
вместо blue), не использовали предложений длиннее двух-трех слов, с трудом подбирали слова и часто использовали их неточно (например, говорили “стакан” или “чай”, когда им показывали чашку и просили сказать, как называется этот предмет), а также испытывали трудности с восприятием грамматических конструкций (например, не чувствовали разницы между предложениями “за девочкой бежит лошадь” и “девочка бежит за лошадью”). При этом у детей не было умственной отсталости, они нормально справлялись с математикой, умели читать и писать; проблемы были связаны именно с устной речью. Элизабет и ее коллеги по школе обратились в отделение клинической генетики Лондонского детского госпиталя. Специалисты, работавшие там, составили родословную семьи [8]. Выяснилось, что ребенок может унаследовать заболевание от своего родителя с вероятностью 50 % и у детей в одной и той же семье проблема может либо быть ярко выраженной, либо полностью отсутствовать. Это классическая картина наследования одной-единственной доминантной аллели[49], и это стало сенсацией: до тех пор предполагалось, и небезосновательно, что в развитие речи вносят вклад много разных генов. Их действительно много, но среди них удалось выявить один особенно важный. Позже его идентифицировали; назвали FOXP2; выяснили, что он кодирует фактор транскрипции (белок, который активирует считывание некоторых генов), важный для развития мозга; что этот белок у человека всего на две аминокислоты отличается от белка шимпанзе и что у неандертальцев он был таким же, как у нас; что FOXP2 задействован во многих процессах, связанных с развитием мозга, но самое главное – он связан с речью не только у людей, а, по-видимому, вообще у всех животных, у которых в той или иной форме присутствует звуковая коммуникация между сородичами. Например, это касается певчих птиц: в норме зебровые амадины довольно точно воспроизводят песню, которую слышали в детстве, а вот при подавлении работы FOXP2 издают вместо единой мелодии довольно разрозненные (и все время разные) звуки [9].Вы уже заметили, что в большинстве случаев новую информацию о функциях генов получают так: находят или создают существо, у которого этот ген сломан, и смотрят, что испортилось. FOXP
2 не исключение: созданы мыши, у которых он просто выключен. В том случае, если у них не работала ни одна копия гена (вообще их две: унаследованная от мамы и от папы), животные в принципе чувствовали себя очень плохо, но в том числе у мышат полностью отсутствовал ультразвуковой писк, который они в норме используют, чтобы звать маму. Если одна нормальная копия гена все же присутствовала, мышата пищали, но намного меньше, чем обычные [10].Но можно и не портить гены мышей, а напротив, извините за антропоцентричность, их улучшить. А именно – заменить мышиный FOXP
2 на человеческий и посмотреть, что за зверь получится. Такие мыши были впервые созданы в 2009 году [11]. Они отличались от обыкновенных мышей по целому ряду структурных и функциональных особенностей мозга, но в контексте истории про речь самое интересное наблюдение было связано с тем, что унесенные из гнезда мышата действительно пищали немножко по-другому, например, у них были более длинными эпизоды сложного писка (с перепадами звуковых частот). Впрочем, научное сообщество больше заинтересовали не отличия в писке, а отличия в обучаемости. В 2014 году вышло большое исследование [12], в котором мыши с человеческим FOXP2 (животных, которых в исследовательских целях делают в чем-либо похожими на людей, так и называют: гуманизированные) и обычные мыши блуждали по лабиринтам в поисках еды.