Читаем В начале было ничто. Про время, пространство, скорость и другие константы физики полностью

Есть разные виды энергии – кинетическая, то есть энергия движения; потенциальная, связанная с положением объекта, как, например, энергия, возникающая благодаря притяжению тела Землей; лучевая, то есть энергия, переносимая излучением, – например, тепло, идущее от Солнца, является движущей силой фотосинтеза и всего каскада его следствий, составляющих то, что мы называем биосферой [7]. Каждый вид энергии может быть преобразован в любой другой вид. Тем не менее в природе, оказывается, существует строгий закон: общее количество энергии во Вселенной постоянно. Если энергия одного вида расходуется, она должна превратиться в энергию другого вида или появиться в том же виде, но в другом месте. Знакомый всем пример такого постоянства – мяч, подброшенный вверх. Сначала в нем много кинетической энергии. По мере того, как он взлетает все выше и выше, преодолевая силу притяжения, его потенциальная энергия растет, а кинетическая падает. В высшей точке своей траектории мяч на миг оказывается в покое – в этот момент его кинетическая энергия нулевая, а вся его первоначальная энергия перешла в потенциальную. Как только он начинает падать обратно на землю, ускоряя при этом свое движение, его потенциальная энергия снова уменьшается, а кинетическая растет. На каждой стадии полета мяча, от начала до конца, его полная энергия, сумма кинетической и потенциальной, постоянна. Закон сохранения энергии подводит итог этого постоянства: он утверждает, что энергия не может быть ни создана, ни уничтожена.

В главе 1 я упоминал, что закон сохранения энергии настолько всеобъемлющ, что даже его кажущееся нарушение приводит к предсказанию и открытию новых фундаментальных частиц материи. Нильс Бор (1885–1962), датский физик-теоретик, создатель ранней версии квантовой механики, рассматривая непонятные результаты наблюдений только что открытых ядерных процессов, предположил, что здесь закон сохранения энергии все же нарушается. Но оказалось, что этого не происходило – энергию уносила ранее неизвестная частица, нейтрино, то есть «нейтрончик». Существование нейтрино предсказал в 1930 году Вольфганг Паули. В 1956 году, после долгих и трудных поисков частица в конце концов была экспериментально обнаружена [8]. Этот эпизод показывает, что закон сохранения энергии в каком-то смысле напоминает известное «правило Дэвида Юма» о чудесах, – согласно этому правилу, разумнее не поверить тому, кто рассказывает о чуде, чем поверить в то, что он рассказывает. Поэтому ученые воспринимают любое сообщение о нарушении сохранения энергии с крайним скепсисом. Как и в приведенном примере, в каждом таком случае закон ставился под сомнение, ситуация тщательно проверялась, и сохранение энергии неизменно подтверждалось. Нельзя, однако же, не признать, что в неисследованных частях космоса могут еще таиться драконы и что в каких-то пока неизвестных нам событиях сохранение энергии нарушается.

В свое время, а именно в главе 8, мне придется вернуться к этому вопросу в связи с великой идеей, просветляющей человеческую мысль, хоть и повсеместно неверно интерпретируемой, – принципом неопределенности Гейзенберга. Некоторые считают, что этот принцип открывает в законе сохранения энергии лазейку, позволяющую энергии флуктуировать на очень короткой шкале времени. На более широком временном масштабе и в общепринятых ситуациях сохранение энергии является основой невозможности вечного двигателя, то есть производства работы без потребления топлива. Действительно, одно из проявлений этого закона – крах множества отчаянных попыток построить механизм, находящийся в состоянии вечного движения. На протяжении веков всяческие шарлатаны снова и снова объявляли о том, что им наконец это удалось – но нет, вечный двигатель так и не создали, и сейчас уже ясно, что эта задача решена быть не может. Данный экспериментальный факт, лишающий нас всякой надежды на получение бесконечного количества даровой энергии, а вследствие этого и на какие-либо перспективы бесконечного благоденствия, стал одним из оснований целой большой группы законов природы – законов термодинамики, к которым я вернусь в главе 5. Шарлатаны, правда, не унимаются – подстегиваемые мечтой о фантастическом богатстве, они продолжают время от времени предлагать все новые и новые хитроумные конструкции машин, производящих работу из ничего; но каждый раз все кончается для них позорным крахом и насмешками, а доверие к закону становится еще сильнее. До некоторой степени мы должны быть благодарны этим беднягам (как, конечно, и их оппонентам – честным труженикам, взявшим на себя нелегкую задачу опровергать их заявления) за то, что неудачи их упорных, агрессивных, одержимых нападок на закон сохранения энергии привели только к укреплению убежденности в его справедливости.

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература