Насколько мне известно, не существует никаких непосредственных интересных повседневных следствий из этой скрытой симметрии высших измерений. Впрочем, об одном таком следствии я все же слышал – это один тайный аспект структуры водородного атома, углубляться в который мне не хочется, несмотря на то, что эти атомы составляют (если не считать темной материи) самый распространенный вид вещества во Вселенной [51]
. Я мог бы развить эту тему и сказать, что устранение гиперсферической симметрии взаимодействия электрона с ядром, в случаях, когда в атоме больше одного электрона (что верно для всех элементов, кроме водорода), объясняет структуру Периодической таблицы элементов, а с ней и всего мира химии (в который входит биология, а после экстраполяции и социология). Но такое высказывание, пожалуй, уже было бы похоже на пускание пыли в глаза, хотя иметь его в виду, тем не менее, стоит. В этой связи, вообще-то, надо воспользоваться возможностью упомянуть еще один довольно туманный закон природы –Я должен теперь углубиться в кулоновские и другие взаимодействия, которые в каких-то случаях ответственны за поддержание целостности вещества, за скрепление его частиц друг с другом, а в других – за их разъединение. Происхождение этих взаимодействий тоже глубоко коренится в бездействии и анархии.
Моей отправной точкой будет уравнение Шредингера для распространения волн, о котором я рассказывал в главе 3. Я говорил тогда, что центральное положение квантовой механики – дуализм материи: частицы становятся волнами и наоборот. В этой связи я должен отметить интерпретацию волны, данную немецким физиком Максом Борном (1882–1970), – его разносторонний вклад в формулировку квантовой механики в 1954 году был запоздало отмечен Нобелевской премией. Борновская квантовомеханическая интерпретация волны заключается в том, что квадрат амплитуды волны в некоторой области дает вероятность нахождения частицы в этой области. С точки зрения этой интерпретации подумаем о волне с одинаковой амплитудой (высотой волновых пиков) и постоянной длиной (расстоянием между пиками), волне, растянувшейся отсюда до горизонта и уходящей за его пределы. Представим теперь, что произошел небольшой продольный сдвиг всей волны так, что все ее пики и впадины слегка сместились. Никаких наблюдаемых изменений при этом не произошло, в том смысле, что, если бы вам потребовалось оценить вероятность отыскания частицы в любой точке, до сдвига и после вы получили бы один и тот же результат[52]
. Мы говорим, что такое наблюдение инвариантно (то есть неизменно) относительно глобального (то есть повсюду одинакового) «калибровочного преобразования». Последний термин нуждается в небольшом пояснении. Эти слова означают, что если бы вы поместили вдоль волны измерительный прибор, например линейку, и отметили положение первого пика волны, то после небольшого ее продольного сдвига вам пришлось бы немного сдвинуть и линейку, чтобы получить тот же отсчет.До сих пор все выглядит, пожалуй, слишком просто, даже тривиально, – возможно, как и все элементарные истины. Но мы находимся на пороге мира калибровочных теорий взаимодействия частиц – одного из форпостов современной физики. Поэтому займемся демонстрацией нетривиальности сказанного выше. Мы убедимся, что из этих самоочевидных утверждений вытекают ошеломляющие следствия.