Читаем В начале было ничто. Про время, пространство, скорость и другие константы физики полностью

Но законы могут быть и точными. Например закон сохранения энергии, который состоит в том, что энергия не может быть создана или уничтожена: она может только переходить из одной формы в другую, но общее количество энергии, которое есть у нас на сегодняшний день, останется таким же навеки и всегда было таким в прошлом. Этот закон имеет такую силу, что на его основании можно совершать открытия. В 1920-х было замечено, что при ядерном распаде определенного вида энергия как будто не сохраняется. И так как явление было совершенно новым и неизученным, появилось предположение, что это и вправду так. Альтернативная точка зрения, предложенная в 1930 году австрийским физиком-теоретиком Вольфгангом Паули (1900–1958), заключалась в том, что энергия сохраняется, но часть ее уносится пока неизвестными частицами. Это предположение стимулировало поиски таких частиц, и в итоге была зарегистрирована новая элементарная частица – нейтрино. Как мы еще увидим, закон сохранения энергии глубочайшим образом связан с самим фактом познаваемости Вселенной – в нем коренится принцип причинности, сама идея, что одно событие может быть причиной другого. Потому этот закон, по сути, лежит в основе всех объяснений. Для нашего последующего повествования он будет значить очень много.

Есть много других законов, которые выглядят похожими по статусу на закон Гука (то есть являются приблизительными и приносят большую практическую пользу, помогая нам делать предсказания и понимать поведение материальных тел). Много и таких, которые напоминают закон сохранения энергии (не являются приблизительными, но глубоко связаны со структурой объяснения и понимания). Это подсказывает мне, что можно разделить все законы на два класса, которые я назову внутренними и внешними («внезаконами»). Внутренние законы – это очень глубокие структурные закономерности Вселенной. Они – ее первичное законодательство, фундамент ее понимания, ее краеугольный камень. Закон сохранения энергии – по моему убеждению, внутренний закон, и, хоть я говорю это не без колебаний, он, возможно, порождает все остальные внутренние законы. Внешние законы – «внезаконы», такие как закон Гука и другие, с которыми мы вскоре познакомимся, – младшие родственники внутренних. Это подзаконные «нормативные акты», лишь немногим отличающиеся от простых уточнений внутренних законов. Мы не можем обойтись без них, и во многих случаях именно их открытие, применение и интерпретация двигают вперед науку. Но они лишь капралы армии, во главе которой стоят полководцы.

Мне надо привлечь ваше внимание к одной особенной разновидности законов: к законам, которые совершенно ни к чему не применимы и все-таки очень полезны. Это маловразумительное высказывание надо объяснить. Как я уже сказал, «внезаконы» обычно являются приближенными. Однако в некоторых случаях это приближение становится все точнее и точнее по мере того, как материала, для описания которого этот закон предназначен, остается все меньше и меньше. Если мы доведем эту уменьшающуюся прогрессию до ее предела, мы увидим, что закон сделался практически точным (а возможно, и идеально точным), когда количество описываемого им материала обратилось в нуль. Здесь мы имеем дело с так называемым предельным законом – он достигает полной точности в пределе, в котором описывать уже нечего.

В том виде, в каком я это представил, получается, будто такой закон не имеет смысла, – он применим только при отсутствии своего предмета. Но вы скоро убедитесь, что «предельные законы» имеют огромную ценность – они как бы помогают соскрести «грязь» с деталей своего собственного механизма. Я на примере поясню, что имею в виду.

Около 1660 года в своей мастерской-лаборатории неподалеку от оксфордской Хай-стрит (там, где теперь находится Университетский колледж, но, может быть, и на нынешней территории моего собственного Линкольн-колледжа) англо-ирландский аристократ Роберт Бойль (1627–1691) занимался исследованиями «упругости воздуха» – его сопротивления сжатию. К этому его, возможно, подтолкнули предложения его усердного ассистента Ричарда Таунли и сотрудничество с уже упоминавшимся здесь вездесущим и всезнающим Робертом Гуком. Бойль установил закон природы, по-видимому, управлявший поведением газа, известного нам как воздух [5]. А именно, он обнаружил, что для данного количества воздуха произведение создаваемого этим воздухом давления на занимаемый им объем постоянно. Увеличим давление воздуха – объем уменьшится, но произведение давления на объем останется тем же, что и было. Снова увеличим давление – и снова та же история, объем уменьшается, произведение сохраняется. Таким образом, закон Бойля (который французы называют законом Мариотта) состоит в том, что произведение давления газа на его объем для данного количества газа всегда постоянно. Сейчас мы бы еще добавили, что при этом температура газа тоже должна быть постоянной.

Перейти на страницу:

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Путешествия и география / Прочая научная литература / Образование и наука / Научная литература
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука