Читаем В небе завтрашнего дня полностью

Таково важнейшее следствие влияния растущей скорости полета на работу воздушно-реактивного двигателя самолета. Это следствие, на первый взгляд, несколько неожиданно. На самом деле, борьба за непрерывный рост скорости полета до настоящего времени неизменно приводила к постепенному усложнению турбореактивного двигателя. Достаточно вспомнить хотя бы о той же проблеме повышения температуры газов перед турбиной. И вдруг такое принципиальное, огромное упрощение, как устранение наиболее сложных частей двигателя — компрессора и турбины! Так идет развитие авиации — не плавно, не постепенно, а скачками, когда накапливающиеся постепенные изменения вызывают резкий переход на качественно иную ступень развития. Так было, например, когда поршневой двигатель уступил место турбореактивному; так будет с турбореактивным двигателем, когда при значительно возросших скоростях полета он уступит место прямоточному.

Простота прямоточного воздушно-реактивного двигателя объясняет, почему его часто называют «летающей топкой». Ведь этот двигатель действительно представляет собой как бы одну топку, в которую непрерывно втекает широкой рекой воздух и из которой так же непрерывно вытекают раскаленные газы. И такая примитивная по идее топка, бессмысленная, если она неподвижна, превращается в совершеннейший реактивный двигатель, когда она мчится в воздухе со скоростью, в 3–4 раза превосходящей скорость звука. При этих условиях прямоточный двигатель не имеет себе равных во всем многочисленном семействе реактивных двигателей: он способен развивать наибольшую тягу на килограмм своего веса и вместе с тем меньше всех остальных расходовать топлива на килограмм развиваемой тяги. Расчет показывает, например, что прямоточный двигатель диаметром в один метр способен при скорости 4000–5300 километров в час развивать тягу в 150 и более тонн 10* расходуя в 8 раз меньше топлива, чем жидкостный ракетный двигатель, о котором речь будет идти ниже (это единственный двигатель другой конструкции, способный обеспечить полет с указанной выше скоростью). Неудивительно, что прямоточный двигатель по праву считают двигателем завтрашнего дня.

Конечно, прямоточный двигатель прост лишь по своей принципиальной схеме. В действительности он гораздо сложнее, а рабочий процесс в нем ставит труднейшие задачи перед учеными и конструкторами. К числу этих проблем относятся, например, торможение в диффузоре двигателя стремительно набегающего на него сверхзвукового потока воздуха, сгорание топлива, впрыскиваемого в несущийся с огромной, «сверхураганной» скоростью воздушный поток, регулирование двигателя и многие другие.

И все же главная слабость прямоточного двигателя не в этих проблемах — они хоть и сложны, но их можно решить, — а во взлете самолета.

Как бы ни старались ученые и инженеры, они не смогут заставить прямоточный двигатель осуществить взлет самолета: ведь этот двигатель способен развивать тягу только в полете с большой скоростью. Поэтому на самолете с прямоточным двигателем обязательно нужно иметь какой-нибудь другой двигатель; с его помощью самолет взлетит и наберет скорость, при которой уже целесообразна работа основного, прямоточного двигателя. Можно, конечно, как это иногда предлагается, установить самолет с прямоточным двигателем на другом, тяжелом самолете с двигателями иного типа, например турбореактивными. Этот второй самолет — «носитель» или «матка» — поднимет его в воздух. Только там, при большой скорости полета, будет запущен прямоточный двигатель, и вскоре «носитель» останется далеко позади.

Можно осуществлять взлет самолета и с катапульты. В этом случае он будет просто «выстрелен» в воздух. Правда, такой взлет скорее напоминает запуск управляемого снаряда. Кстати сказать, прямоточный двигатель, простой, дешевый, легкий и высокоэффективный при больших скоростях полета имеет широкие перспективы для применения на управляемых снарядах — этой военной беспилотной авиации разового использования. Уже сейчас некоторые управляемые самолеты-снаряды с прямоточным двигателем достигали скорости полета 3500 километров в час и более 11*.

Но есть и еще один способ преодоления этой слабости прямоточного двигателя. Вы уже, вероятно, обратили внимание на большое принципиальное сходство прямоточного двигателя и форсажной камеры турбореактивного двигателя: рабочий процесс у них одинаков, да и конструктивное выполнение сходно. По существу, форсажная камера является прямоточным двигателем, установленным непосредственно за турбореактивным, так что турбореактивный двигатель с форсажной камерой представляет собой просто сочетание двигателей двух типов — турбореактивного и прямоточного. Так как в настоящее время скорости полета зще сравнительно малы, то прямоточный двигатель в этих условиях невыгоден и потому используется лишь для кратковременного форсажа, то есть как форсажная камера.

Перейти на страницу:

Похожие книги

Великий потоп. Мифы и реальность
Великий потоп. Мифы и реальность

Библейской легенде о «всемирном потопе» когда-то верили безоговорочно… У различных народов мира существуют рассказы о катастрофическом нашествии вод. Имеется ли рациональное зерно в легендах о потопе? Что говорит современная наука о возможности «всемирного потопа» — в прошлом, настоящем и будущем? Ответ на эти вопросы вы найдете в новой книге ленинградского писателя и ученого Александра Кондратова «Великий потоп: мифы и реальность».Александр Кондратов — действительный член Географического общества, кандидат филологических наук, член Научного совета по кибернетике АН СССР. Его перу принадлежит свыше 60 научных работ и 32 книги, переведенные на двадцать языков мира. Особым успехом у советских и зарубежных читателей пользуется серия книг А. Кондратова, посвященная связям между историей человечества и историей океанов: «Тайны трех океанов», «Атлантика без Атлантиды», «Адрес — Лемурия?», «Следы — на шельфе».

Александр Михайлович Кондратов

Детская образовательная литература / Геология и география / История / Научная литература / Книги Для Детей / Образование и наука