Такой двигатель, названный турборакетным, будет обладать рядом достоинств своих «родителей» — турбореактивного и ракетного. В частности, мощность его турбины не снижается с высотой, как у турбореактивного двигателя, то есть он становится высотным, как и ракетный. Турборакетный двигатель окажется очень эффективным для скоростных самолетов.
И, наконец, последний пример.
Хорошо известна основная слабость прямоточного двигателя. Несравненный по своим качествам при полете с большими сверхзвуковыми скоростями, он оказывается совершенно беспомощным при взлете и малых скоростях полета. Самолет с прямоточным двигателем должен иметь еще один двигатель — для взлета. Обычно для этой цели устанавливается либо турбореактивный, либо ракетный двигатель.
Но, может быть, создание нового двигателя, сочетающего в себе свойства прямоточного и ракетного, позволило бы достигнуть лучших результатов? Так родилась идея еще одного двигателя-гибрида — ракетно-прямоточного. В этом двигателе, похожем на обычный сверхзвуковой прямоточный, в центральном теле установлен жидкостный ракетный двигатель. Ракетный двигатель работает на взлете и на очень больших высотах, где тяга прямоточного двигателя из-за малой плотности атмосферного воздуха очень низка. Но на ряде режимов работают оба двигателя. При этом показатели у «гибрида» лучше, чем у исходных двигателей в отдельности. Ракетно-прямоточный двигатель может быть использован для самолетов с очень большой скоростью и высотой полета.
Конечно, кроме перечисленных, есть и другие двигатели-гибриды. Но еще больше существует возможностей для их создания. Кто знает, какой из них станет двигателем будущего…
Глава VI. «Экзотические» топлива и «экзотические» двигатели
Из этой главы читатель узнает о новых топливах для авиационных двигателей и о новых, необычных двигателях со столь же необычными свойствами.
Реактивная техника уже предоставила в распоряжение авиации двигатели различного типа. Некоторые из них способны развивать те огромные тяги, без которых невозможен сверхзвуковой полет со всевозрастающей скоростью.
Большая тяга — главное требование к современному авиационному двигателю. Главное, но не единственное. На самом деле, нужен ли, допустим, авиационный двигатель, развивающий колоссальную тягу и поэтому способный за короткое время разогнать самолет до большой скорости, но поглощающий за это же короткое время все топливо, запасенное на самолете? Расчеты и опыт показывают, правда, что и с помощью такого двигателя можно совершить дальний полет 17*. Поэтому не должна быть исключена вероятность использования и такого полета, при котором двигатель работает лишь короткое время, а затем самолет совершает на огромных высотах баллистический полет с возможным последующим планированием в нижних слоях атмосферы. Однако это потребовало бы полной перестройки авиационной техники, а в пассажирской авиации, например, где значительные инерционные перегрузки недопустимы, вызвало бы серьезные трудности.
Поэтому авиацию больше интересует двигатель, не просто позволяющий достигнуть огромных скоростей полета, но и обеспечивающий достаточную длительность такого сверхскоростного полета.
Но как уменьшить необычайную прожорливость реактивных двигателей?
Двигатели для сверхскоростного полета развивают колоссальную тягу, чтобы преодолеть сопротивление воздуха. Понятно, что увеличенная тяга означает и увеличенное потребление топлива. В самом деле, если допустить, что турбореактивный двигатель расходует килограмм топлива в час на каждый килограмм развиваемой им тяги, то при тяге 1000 килограммов он будет расходовать тонну топлива за час полета, а при тяге 50 тысяч килограммов, очевидно, 50 тонн в час.
Сократить расход топлива можно двумя путями: уменьшив величину тяги, необходимой для совершения полета с данной скоростью, и уменьшив часовой расход топлива на каждый килограмм тяги (его называют удельным расходом).
Само собой разумеется, что уменьшение тяги, необходимой для совершения полета, зависит и от двигателя — чем меньше его вес и размеры, тем меньшим будет сопротивление самолета. Это делает ясным главное направление развития современных двигателей — они должны иметь малый вес и малый «лоб», то есть малую лобовую поверхность. Основная задача здесь решается конструктором самолета — аэродинамические качества его машины должны быть высокосовершенными. Однако этим путем значительного снижения тяги, потребной для полета, не получить.
Желанной цели можно достигнуть, только увеличивая высоту полета. На высоте 25–30 и более километров плотность воздуха так мала, что и аэродинамическое сопротивление, пропорциональное этой плотности, тоже становится очень малым. Но, значит, настолько же уменьшается и потребная тяга двигателя. Вот почему скоростная авиация сегодняшнего, а тем более завтрашнего дня, — это авиация высотная. Чем выше — тем быстрее.