Читаем В небе завтрашнего дня полностью

Стоит упомянуть, например, о разработке новых методов конструирования самолета. До сих пор практически все части самолета имели примерно одинаковую температуру. Теперь, в условиях «теплового барьера», положение изменится. Как только самолет полетит с большой, «тепловой» скоростью, температура его обшивки быстро повысится. Какое-то время внутренние части конструкции будут оставаться по-прежнему холодными, но затем снаружи внутрь потечет тепло. До тех пор, пока не установится одинаковая температура во всех частях самолета, будет существовать этот тепловой поток. Но такой неравномерный нагрев очень вреден для конструкции. Отдельные ее части начнут коробиться, изгибаться, трескаться. Самолет может из-за этого рассыпаться в воздухе. Очевидно, наука о прочности самолетов, совершившая за последние годы чудеса и сумевшая значительно облегчить самолет, должна сделать еще один важнейший шаг вперед. Она должна указать конструктору, как построить самолет, способный выдержать большие разности температур, и как их уменьшить.

Не менее серьезные задачи возникают и перед аэродинамиками. Нужно научиться точно рассчитывать аэродинамический нагрев быстролетящего самолета, определять температуру поверхности в любой точке. Для этого надо детально исследовать процессы, происходящие в пограничном слое. В частности, теплопередача в условиях полета в разреженной атмосфере с большой скоростью подчиняется иным законам, чем при полете в обычном, плотном воздухе. Необходимо также уточнить роль излучения тепла нагретым крылом в окружающую атмосферу. Некоторые данные позволяют считать, что такое излучение при его умелом использовании сможет значительно снизить температуру поверхности крыла и этим существенно отодвинуть «тепловой барьер».

Нужно найти и наивыгоднейшие формы самолета, чтобы уменьшить аэродинамический нагрев. Так, оказывается, что эти формы вовсе не всегда соответствуют минимальному лобовому сопротивлению. В частности, острая передняя кромка крыла, напоминающая лезвие ножа и характерная для современных сверхзвуковых самолетов, должна будет, вероятно, снова уступить место закругленной, овальной кромке. Сопротивление при этом возрастет, но зато температура крыла будет ниже 4*.

Не менее важны задачи создания самолетного оборудования, работоспособного в условиях «теплового барьера». Ведь в современной авиации роль вспомогательного оборудования стала исключительно большой. Все эти многочисленные устройства навигационного оборудования, электро-, радио- и радарного оборудования и многие другие жизненно важны для самолета, без них невозможен полет. А между тем они очень чувствительны к своей рабочей температуре и выходят из строя при ее чрезмерном повышении. И здесь, очевидно, работа должна вестись в двух направлениях: во-первых, нужны исследования в области создания «жароупорного» оборудования, способного работать при повышенных температурах (эти трудные исследования настойчиво ведутся в ряде стран), и, во-вторых, разработка охлаждения оборудования в полете.

Но если для приборов и агрегатов возможны два варианта решения задачи, то, к сожалению, только один путь остается, когда речь заходит о летчике, экипаже самолета. Работоспособность экипажа самолета должна быть обеспечена созданием наиболее благоприятной для человека температуры. Так возникает проблема создания «искусственного климата» в кабине самолета.

Эта проблема не представляет чего-нибудь принципиально нового для техники. Довольно давно применяются, например, установки для создания «искусственного климата» в зданиях — театрах, гостиницах, магазинах, жилых домах. Применяются эти установки — они называются установками кондиционирования воздуха — ив железнодорожных пассажирских вагонах и даже в автомобилях. Но задача авиационных установок подобного рода оказывается неизмеримо сложнее.

Наиболее широкое распространение в авиации получили установки кондиционирования, в которых воздух охлаждается при расширении в специальной турбине. В кабину самолета, изолированную от окружающей атмосферы, он поступает обычно из компрессора двигателя. Практически на всех высотах давление воздуха за компрессором еще достаточно для этого велико — ведь компрессор сжимает воздух раз в десять, а то и больше. Но и температура за компрессором при таком сжатии тоже сильно повышается и достигает 350–500°. Для охлаждения воздух из компрессора сначала пропускают по трубкам теплообменника, снаружи которых течет атмосферный воздух. А затем охлажденный воздух поступает в крохотную воздушную турбинку, вращающуюся со скоростью 100 тысяч и даже более оборотов в минуту. При расширении в турбинке давление воздуха снижается, тем самым снижается и его температура, так как турбинка совершает полезную работу, — ее мощность чаще всего расходуется на вращение вентилятора, который гонит атмосферный воздух через упомянутый выше теплообменник, улучшая этим предварительное охлаждение кабинного воздуха.

Перейти на страницу:

Похожие книги

Великий потоп. Мифы и реальность
Великий потоп. Мифы и реальность

Библейской легенде о «всемирном потопе» когда-то верили безоговорочно… У различных народов мира существуют рассказы о катастрофическом нашествии вод. Имеется ли рациональное зерно в легендах о потопе? Что говорит современная наука о возможности «всемирного потопа» — в прошлом, настоящем и будущем? Ответ на эти вопросы вы найдете в новой книге ленинградского писателя и ученого Александра Кондратова «Великий потоп: мифы и реальность».Александр Кондратов — действительный член Географического общества, кандидат филологических наук, член Научного совета по кибернетике АН СССР. Его перу принадлежит свыше 60 научных работ и 32 книги, переведенные на двадцать языков мира. Особым успехом у советских и зарубежных читателей пользуется серия книг А. Кондратова, посвященная связям между историей человечества и историей океанов: «Тайны трех океанов», «Атлантика без Атлантиды», «Адрес — Лемурия?», «Следы — на шельфе».

Александр Михайлович Кондратов

Детская образовательная литература / Геология и география / История / Научная литература / Книги Для Детей / Образование и наука