Читаем В океане энергии полностью

Зачем понадобилось тратить так много слов? Вот зачем. Не все жильцы уровня 3 обязательно совершают вынужденные переходы на уровень 1. Часть из них самопроизвольно (спонтанно) перескакивает на уровень 2. Находясь на уровне 2, они не испытывают никакого воздействия со стороны светового луча, каким бы мощным он ни был. Фотон переводит атом в другое состояние при условии, что его энергия равна разности энергий двух состояний, в нашем случае разности между уровнями 3 и 1. На уровне 2 атомы находятся в мета-стабильном состоянии и через определенные промежутки времени, которые зависят только от самих атомов, также спонтанно переходят на уровень 1.

Все зависит от того, что делают атомы более охотно, т. е. с большей вероятностью. Если они охотнее переходят с уровня 3 на уровень 2 (по сравнению с переходами с уровня 2 на уровень 1, то на уровне 2 постепенно накапливается больше атомов, чем на уровне 1. Населенности уровней 1 и 3 все время, пока действует световой луч, равны друг другу, а население уровня 2 — это атомы, ушедшие с уровня 3. Возможен случай, когда с большей вероятностью совершаются переходы с уровня 2 на уровень 1 (по сравнению с переходами с уровня 3 на уровень 2). Тогда население уровня 3 постепенно превысит население уровня 2.

Вот она, долгожданная инверсия населенностей! Пока действует световой луч, либо население уровня 2 преобладает над населением уровня 1 (чаще всего так и бывает), либо население уровня 3 преобладает над населением уровня 2. Переходы с уровня 3 на уровень 2 или с уровня 2 на уровень 1 никак не зависят от того, что происходит между уровнями 3 и 1. Эти переходы совершаются спонтанно.

Но может быть и иначе. При спонтанном переходе, например, с уровня 2 на уровень 1 излучается фотон, который вызывает вынужденное излучение другого жильца уровня 2. Два когерентных фотона вынудят еще двух жильцов уровня 2 излучить фотоны и т. д. Получается цепочка: освещаем вещество, например, зеленым светом (с большой энергией фотонов) и за счет этого поддерживаем равенство населенностей уровней 1 и 3. За счет спонтанных переходов поддерживается населенность уровня 2, которая в нашем примере превышает населенности уровней 1 и 3. Образуется активное вещество, которое при определенных условиях излучает когерентный световой луч теперь уже красного цвета (с меньшей энергией фотонов). Если излучается именно свет, а не радиоволны, то такой прибор называется не мазером, а лазером, что означает опять же первые буквы английских слов «усиление света (по-английски «свет» произносится как «лайт», отсюда буква «л») за счет вынужденного излучения».

Процесс перевода атомов из состояния 1 в состояние 3 получил название накачки. Накачивать вещество можно различными способами, но пока ограничимся оптической накачкой, т.е. будем считать, что вещество освещается, а энергия фотонов, испускаемых источником света, достаточна для переброса атомов из состояния 1 в состояние 3. Значит, задача создания твердотельного лазера наконец-таки решена? Конечно, воспользоваться идеей трехуровневой схемы накачки весьма заманчиво. Но беда в том, что в твердом теле нет никаких уровней. Энергетические уровни отдельных атомов объединяются там в зоны, и зон, о которых может идти речь, либо только две, как в полупроводниковых изоляторах, либо одна общая зона, как в проводниках.

Ну что же — снова тупик? Не столько тупик, сколько трудность, и трудность преодолимая. Надо брать не чистые вещества, а вещества с примесями. Причем атомов примеси должно быть очень немного. Если выбранное вещество—кристаллическое твердое тело, атомы примеси располагаются в узлах кристаллической решетки, а расстояния между атомами примеси настолько велики, что отдельные характерные для этих атомов энергетические уровни не объединяются в зоны.

Можно подобрать такую пару основное вещество — примесь, чтобы три выбранных энергетических уровня примеси находились на достаточно больших расстояниях от других энергетических уровней. В частности, они могут находиться в пределах запрещенной зоны. Пример такого вещества с примесью — рубин (окись алюминия АЬО'З с примесью хрома). Здесь роль атомов примеси играют атомы хрома. У розового рубина содержание хрома составляет примерно 0,05%, т.е. примерно 1019 атомов на 1 см3, вполне хватает, чтобы создать четко выраженную трехуровневую схему и построить лазер огромной мощности.

Перейти на страницу:

Похожие книги

Вечность. В поисках окончательной теории времени
Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни.Книга «Вечность. В поисках окончательной теории времени» не просто следующий шаг на пути к пониманию почему существует Вселенная — это прекрасное чтения для широкого круга читателей, которые интересуются физикой и устройством нашего мира.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Образование и наука
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии