Читаем В поисках «энергетической капсулы» полностью

Взять хотя бы поддержание сверхнизких температур в криостатах, масса которых миллионы тонн, а объем – десятки миллионов кубометров. Где достать столько жидкого гелия? Чем покрыть расход его на непрерывное испарение? Кроме того, очень сложны выводы тока из накопителей – они ведь тоже должны быть сверхпроводниками, то есть находиться при температурах, близких к абсолютному нулю, а это трудно выполнить. Зарядка и разрядка таких накопителей производится только постоянным током, а промышленности нужен ток переменный.


Но это еще ничего, дальше совсем плохо. Чтобы корпус накопителя равномерно упирался в грунт, надо распорки проложить внутри криостата, в жидком гелии. Однако тогда сильно возрастет приток тепла в криостат, что вызовет дополнительное испарение жидкого гелия! Огромные магнитные поля, возникающие вокруг гигантских сверхпроводящих обмоток, могут оказать опасное воздействие на живую природу и человека. Природа «привыкла» к действию весьма слабых полей земного магнетизма и даже на их изменение реагирует чутко. А тут вдруг в жизнь природы «вмешаются» магнитные поля в миллионы раз сильнее!


И наконец, представим, что случится, если сверхпроводник вдруг разорвется или потеряет свойство сверхпроводимости. А это не исключено. Достаточно чуть-чуть подняться температуре жидкого гелия, и вся колоссальная энергия накопителя выделится почти мгновенно. Спасут ли положение специально предусмотренные медные обмотки, по которым должен пойти ток в случае аварии, неизвестно.


Возможно, специалисты найдут решение перечисленных проблем, тогда такие накопители начнут строить к XXI веку. Разумеется, при условии, что не будет создана «энергетическая капсула» получше – простая, емкая, надежная. И которую, конечно, можно будет поставить на автомобиль! Ведь сверхпроводящие гиганты совершенно не пригодны в качестве двигателя автомобиля.

Плюс химия


Теперь мне стало ясно, что конструкторы автомобилей были тысячу раз правы, используя на них обычные электроаккумуляторы, а не конденсаторы или сверхпроводящие магниты.


Действительно, автомобильные аккумуляторы могут месяцами хранить энергию, причем в достаточно большом количестве. Я сам видел, как иногда автомобили «гоняют на стартере»: включают стартер, питаемый от аккумуляторов, вроде бы для заводки двигателя, но привода на колеса при этом не отключают, как положено по инструкции, – и машина катит по улице. А ведь энергия аккумулятора здесь расходуется не только на движение автомобиля, но и на прокрутку двигателя. Не будь этой прокрутки, автомобиль смог бы пройти «на стартере» больше километра – настолько велика емкость аккумуляторов. Похоже, известные всем нам автомобильные электроаккумуляторы пока ближе всего к «энергетической капсуле».


Позвольте, но так ли уж они известны? Однажды ко мне пришел знакомый мальчик лет шести и в разговоре сказал, что знает, как устроен телевизор. На мой вопрос, может ли он нарисовать его схему, мальчик ответил утвердительно. Однако удивление мое быстро прошло, когда вместо схемы он изобразил переднюю панель телевизора. «Это экран, это ручка громкости, это яркость...» – перечислял он.


Вот так же и я представлял себе электроаккумулятор – пластмассовый ящик с клеммами, внутри которого находятся пластины и кислота, часто называемая «аккумуляторной». Что происходит внутри аккумулятора, каким образом он накапливает энергию, – все это было мне невдомек.


Оказалось, что я не одинок в своем неведении. Никто из водителей, которых я расспрашивал о принципе работы аккумулятора, не дал вразумительного ответа. Мне говорили: он накапливает энергию потому, что к клеммам подсоединяется генератор или выпрямитель, которые и подают в аккумулятор ток. После этого уже сам аккумулятор становится источником тока до тех пор, пока не разрядится. Вроде бы понятно. А почему таким свойством обладает именно аккумулятор, а не кирпич, например? Да потому, дескать, что он так устроен.


Этих сведений мне было явно недостаточно. Пришлось в который раз засесть за книги.


История электроаккумуляторов берет начало со знаменитого опыта, проделанного итальянским физиком Алессандро Вольтой в 1799 году. Ученый опустил медный и цинковый электроды в разбавленную серную кислоту и обнаружил, что между электродами возникла разность потенциалов. Соединив электроды проводником – проволочкой, Вольта получил в ней электрический ток. Тем самым он доказал, что различные металлы, помещенные в растворы кислот, образуют источник тока.


Это был первый в мире гальванический элемент, названный так потом в честь итальянского физика и врача Луиджи Гальвани, который еще до Вольты заметил появление тока при взаимодействии двух разных металлов в проводящей жидкости – электролите.


Перейти на страницу:

Похожие книги

Теория государства и права
Теория государства и права

Учебник, написанный в соответствии с курсом «Теория государства и права» для юридических РІСѓР·ов, качественно отличается РѕС' выходивших ранее книг по этой дисциплине. Сохраняя все то ценное, что наработано в теоретико-правовой мысли за предыдущие РіРѕРґС‹, автор вместе с тем решительно отходит РѕС' вульгаризированных догм и методов, существенно обновляет и переосмысливает РІРѕРїСЂРѕСЃС‹ возникновения, развития и функционирования государства и права.Книга, посвященная современной теории государства и права, содержит СЂСЏРґ принципиально новых тем. Впервые на высоком теоретическом СѓСЂРѕРІРЅРµ осмыслены и изложены РІРѕРїСЂРѕСЃС‹ новых государственно-правовых процессов современного СЂРѕСЃСЃРёР№ского общества. Дается характеристика гражданского общества в его соотношении с правом и государством.Для студентов, аспирантов, преподавателей и научных работников юридических РІСѓР·ов.Р

Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев

Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука