В конце 1960-х годов работавший в Имперском колледже в Лондоне Абдус Салам и работавший в Гарварде Стивен Вайнберг независимо друг от друга разработали модель слабого взаимодействия, основанную на математической симметрии, которую в начале 1960-х изобрел Глэшоу, а через несколько лет – и сам Салам. В новой теории нарушение симметрии требует нового поля, поля Хиггса, и соответствующих частиц, которые также названы в честь Хиггса. Электромагнитное и слабое взаимодействие объединяются в одно симметричное калибровочное поле – электрослабое взаимодействие с бозонами-переносчиками, не обладающими массой. Впоследствии эта теория оказалась перенормируемой, что в 1971 году было подтверждено работой голландского физика Герарда т’Хоофта, и с этого момента теорию стали воспринимать всерьез. В 1973 году появилось свидетельство существования Ζ-частицы, и теория электрослабого взаимодействия оказалась окончательно доказана. Объединенное взаимодействие «работает» только в условиях очень высокой энергетической плотности, как во время Большого взрыва, а в условиях более низких энергий оно самопроизвольно нарушается таким образом, что крупные частицы W и Ζ, задействованные в электромагнитном и слабом взаимодействии, идут своими путями.
Важность новой теории подтверждается тем фактом, что в 1979 году Глэшоу, Салам и Вайнберг получили за нее Нобелевскую премию по физике, хотя тогда еще не было прямого экспериментального доказательства верности их идеи. Однако в начале 1983 года команда ЦЕРНа из Женевы объявила результаты экспериментов с частицами на очень высоких энергиях (достигнутых прямым столкновением пучка высокоэнергетических протонов с пучком высокоэнергетических антипротонов), которые лучше всего описать как W– и Ζ-частицы с массами около 80 ГэВ и 90 ГэВ соответственно. Эти результаты прекрасно соотносились с предсказаниями теории, и таким образом теория Глэшоу – Салама – Вайнберга является «хорошей» теорией, так как ее предсказания можно проверить, в отличие от более ранней теории Глэшоу, которая таковой не являлась. Тем временем теоретики не сидели без дела. Если два взаимодействия можно объединить в одну теорию, то почему нельзя создать великую единую теорию, которая вместила бы в себя все фундаментальные взаимодействия? Мечта Эйнштейна, как никогда, близка к претворению в жизнь в форме не просто симметрии, а суперсимметрии и супергравитации.
Супергравитация
Проблема калибровочных теорий, помимо сложности их перенормировки, заключается в том, что они не уникальны. Точно так же, как отдельная калибровочная теория включает в себя бесконечности, от которых необходимо избавиться посредством перенормировки, чтобы теория соответствовала реальности, существует бесконечное число возможных калибровочных теорий, и те, которые выбраны для описания физических процессов, необходимо подогнать таким же образом, на одинаково ситуативной основе, чтобы они соответствовали результатам наблюдений за реальным миром. Хуже того, в калибровочных теориях ничто не указывает на то, сколько должно быть различных типов частиц – сколько барионов, или лептонов (частиц из того же семейства, что и электроны), или калибровочных бозонов, или чего бы то ни было еще. В идеале физики хотели бы разработать уникальную теорию, которая требовала бы только определенное число определенного типа частиц, чтобы объяснить физический мир. Шаг в сторону такой теории был совершен в 1974 году, когда изобрели суперсимметрию.
Идея появилась из работ Юлиуса Весса из университета Карлсруэ и Бруно Зумино из университета Калифорнии в Беркли. Они оттолкнулись от предположения о том, как должны выглядеть вещи в идеально симметричном мире – что каждый фермион должен обладать бозоном-двойником с такой же массой. Вообще-то такой симметрии в природе не наблюдается, но объяснение может заключаться в том, что симметрия нарушена, как и симметрия, задействованная в электромагнитном и слабом взаимодействии. Само собой, проведя математические расчеты, вы обнаружите, что существуют способы описать суперсимметрии, которые существуют во время Большого взрыва, но затем нарушаются таким образом, что обычные частицы физики получают небольшую массу, в то время как их суперпартнеры обретают огромную массу. После этого суперчастицы могут существовать только короткий период времени, вскоре распадаясь каскадом менее крупных частиц. Чтобы создать суперчастицы сегодня, нам необходимо воссоздать условия Большого взрыва на крайне высоких энергиях, поэтому не стоит удивляться, если даже столкновение пучков протонов и антипротонов в ЦЕРНе не сможет создать их.