В начале 1900-х годов физики были заняты тем, что осваивали новые открытия в области атомного излучения, и новый «математический трюк» Планка, призванный объяснить спектр излучения абсолютно черного тела, не казался особенно важным в сравнении с ними. В самом деле, Нобелевскую премию за свою работу Планк получил лишь в 1918 году – а это очень большой промежуток времени по сравнению с тем, как быстро были оценены работы Кюри или Резерфорда. (Отчасти это было связано с тем, что требуется больше времени для признания кардинально новых теоретических прорывов. Новая теория не так осязаема, как новая частица или рентгеновские лучи, и она должна выдержать проверку временем или получить экспериментальное подтверждение, прежде чем получит всеобщее признание.) Также было нечто странное в новой постоянной Планка –
Поскольку Эйнштейн является следующим человеком, который появится на квантово-механической сцене, стоит немного отклониться в сторону, чтобы пояснить несколько основных принципов. Специальная теория относительности рассматривает три пространственных измерения и время как четырехмерное целое – пространственно-временной континуум. Наблюдатели, движущиеся в пространстве на разных скоростях, видят вещи по-разному: например, они получат различные значения длины палочки, которую они измеряют по мере прохождения мимо нее. Однако можно представить, что палочка существует в четырех измерениях и, по мере того как она движется «сквозь» время, она оставляет за собой четырехмерный след – гиперпрямоугольник, длина которого – это длина палочки, а ширина – количество прошедшего времени. «Площадь» этого прямоугольника измеряется как длина, умноженная на время, и эта площадь является одинаковой для всех наблюдателей, которые измеряют ее, хотя при этом они получают различные значения длины и времени. Таким же образом действие (энергиях время) является четырехмерным эквивалентом энергии, и действие оказывается одинаковым для всех наблюдателей, даже когда они получают различные значения компонентов действия – энергии и времени. В специальной теории относительности
И это, возможно, указывает на холистическую природу физики. Из трех великих вкладов Эйнштейна в науку, опубликованных в 1905 году, один – специальная теория относительности – кажется совершенно отличным от двух других: работ о броуновском движении и фотоэлектрическом эффекте. И тем не менее все они связаны воедино форматом теоретической физики, и, несмотря на известность, которую получила теория относительности, самым главным вкладом Эйнштейна стала его работа о квантовой теории, которая оттолкнулась от работы Планка с помощью фотоэлектрического эффекта.
Революционный аспект работы Планка 1900 года заключался в том, что она показывала границы классической физики. По сути не так важно, что это за границы. Одного лишь факта, что существуют явления, которые не могут быть объяснены лишь с помощью классических идей, основанных на работе Ньютона, было достаточно, чтобы начать новую эру в физике. Впрочем, первоначальный вид работы Планка был гораздо более ограничен, чем зачастую кажется сегодня. Существует школа приключенческих романов, в которой
герой чудесным образом выходит из сложнейших ситуаций в конце каждого эпизода и все заканчивается фразой: «Один прыжок – и Джек освободился». Многие популярные тексты о рождении квантовой механики будто бы рассказывают о научном аналоге прыгуна Джека. «В конце XIX века классическая физика наткнулась на стену. И Планк одним прыжком изобрел квант, освободив физику». Далеко от действительности. Планк лишь предложил квантование электрических осцилляторов внутри атома. Он лишь подразумевал, что они способны испускать энергию только порциями, поскольку что-то мешает им поглощать и излучать «промежуточные» значения энергии.