Читаем В поисках кота Шредингера. Квантовая физика и реальность полностью

В связи с этим интересно, что радиоактивность никогда не исчезает полностью из радиоактивного вещества. Из миллионов атомов половина распадается за определенное количество времени. В течение следующего периода полураспада – ровно такого же отрезка времени – распадается половина оставшихся атомов и так далее. Количество радиоактивных атомов, остающихся в веществе, становится с каждым разом все меньше, стремясь к нулю, но каждый шаг в сторону нуля проходит только половину расстояния до него.

В те дни физики вроде Резерфорда и Содди полагали, что в конце концов кто-нибудь поймет, что именно заставляет распадаться каждый отдельный атом, и это открытие объяснит статистическую природу процесса. Когда Эйнштейн применил статистические методы к модели Бора, чтобы объяснить детали атомных спектров, он тоже предположил, что последующие открытия отбросят необходимость в «актуарных таблицах». Они все ошибались.

Энергетические уровни атома или электрона в атоме можно представить как лестничный пролет. Высоты каждой ступеньки не эквивалентны с точки зрения энергии – верхние уровни располагаются ближе друг к другу, чем нижние. Бор показал, что в случае водорода (простейшего атома) энергетические уровни могут быть представлены в виде лестницы, у которой высота каждой ступени, ведущей к вершине, пропорциональна 1 /гг2, где n – это номер каждой ступени при счете снизу. Переход с первого уровня этой лестницы на второй требует, чтобы электрон поглотил ровно столько энергии hv,

сколько необходимо для перехода на следующую ступеньку; если электрон падает обратно на первый уровень (на «основной уровень» атома), он испускает точно такое же количество энергии. Электрон с основного уровня не может поглотить меньшее количество энергии, потому что не существует промежуточной «ступеньки», на которой он может остановиться. Точно так же электрон со второго уровня не может испустить меньше кванта энергии, поскольку он не может спуститься никуда, кроме как на основной уровень. Так как существует множество ступеней, на которых может остановиться электрон, и так как он может перепрыгивать туда-обратно с любой ступени на любую другую, в спектре каждого элемента множество линий. Каждая линия соотносится с переходом между ступенями – между энергетическими уровнями с разными квантовыми числами. Например, все переходы, которые оканчиваются на основном уровне, производят спектральные линии, подобные серии Бальмера; все переходы с более высоких уровней на второй соответствуют другому набору линий и так далее[12]. В горячем газе атомы постоянно сталкиваются друг с другом, а потому электроны поднимаются на высокие энергетические уровни и затем падают назад, излучая при этом яркие линии спектра. Когда свет проходит сквозь холодный газ, электроны основного уровня набирают энергию, в процессе этого поглощая свет и оставляя темные линии в спектре.

Если модель атома Бора имела хоть какое-то значение, то это объяснение того, как горячие атомы излучают энергию, должно было быть связано с законом Планка. Спектр излучения абсолютно черного тела должен был представлять собой комбинированный эффект излучения энергии множеством атомов в процессе того, как электроны перепрыгивали с одного энергетического уровня на другой.


Рис. 4.1.

Энергетические уровни в простом атоме вроде атома водорода можно сравнить с набором ступеней, имеющих различную высоту. Мяч, помещаемый на различные ступени, символизирует электрон на различных энергетических уровнях атома. Движению вниз с одного уровня на другой соответствует высвобождение определенного количества энергии, связанной в атоме водорода со спектральными линиями серии Бальмера. Промежуточных линий не существует, поскольку нет промежуточных «ступеней» для электрона.


В 1916 году Эйнштейн завершил работу над своей общей теорией относительности и снова обратился к квантовой теории (в сравнении с его главным трудом это, должно быть, казалось для него отдыхом). Возможно, он был вдохновлен успехом модели атома Бора и тем фактом, что как раз в это время его новая версия корпускулярной теории света наконец-то начала обретать признание. В 1905 году, когда Эйнштейн только опубликовал свою интерпретацию фотоэлектрического эффекта, одним из его главных оппонентов стал американский физик Роберт Эндрюс Милликен. Он десять лет проверял эту идею в серии блестящих опытов, начав их с целью доказать, что Эйнштейн был неправ, и закончив в 1914 году обнаружением прямого экспериментального доказательства того, что объяснение фотоэлектрического эффекта с помощью световых квантов, или фотонов, предложенное Эйнштейном, было верным. В процессе этих экспериментов он опытным путем установил точное значение h ив 1923 году по иронии судьбы получил Нобелевскую премию за свои исследования и измерение заряда электрона.

Перейти на страницу:

Похожие книги

Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература