Читаем В поисках кота Шредингера. Квантовая физика и реальность полностью

Однако эксперимент Юнга не перевернул научный мир, особенно в Британии. Научное сообщество там практически приравнивало любое несогласие с идеями Ньютона к ереси и отсутствию патриотизма. Ньютон умер только в 1727 году, а в 1705-м, менее чем за сто лет до оглашения Юнгом своих результатов, он стал первым ученым, которого посвятили в рыцари. В Англии не могли так скоро сбросить со счетов легенду, поэтому, возможно, в те годы Наполеоновских войн наилучшим стало то, что именно француз, Огюстен Френель, подхватил эту «непатриотичную» идею и в итоге развил волновое объяснение природы света. Работа Френеля появилась через несколько лет после опыта Юнга и, будучи более полной, дала волновое объяснение практически всех аспектов поведения света. Среди прочего Френель объяснил явление, известное всем нам сегодня, – красивые цветные разводы, которые возникают при попадании света на тонкую масляную пленку. Это происходит опять же из-за интерференции волн. Часть света отражается от поверхности пленки, тогда как другая проникает внутрь и отражается от нижнего слоя. Таким образом получаются два отраженных пучка, которые интерферируют друг с другом. Поскольку каждый цвет соответствует различной длине волны, а белый свет состоит из смеси всех цветов радуги, отражение белого света от масляной пленки создает множество цветов из-за того, что некоторые волны (цвета) интерферируют деструктивно, а некоторые конструктивно – в зависимости от того, где располагается глаз наблюдателя относительно пленки.

К моменту, когда французский физик Леон Фуко, известный благодаря маятнику, носящему его имя, в середине XIX века установил, что, вопреки предсказаниям корпускулярной теории Ньютона, скорость света в воде меньше, чем в воздухе, к этому уже был готов любой заслуживающий внимания ученый. К этому времени «все знали», что свет, чем бы он ни был, представлял собой некоторую форму волнового движения в эфире. Однако все же было не лишним продемонстрировать, что такое «волна» в пучке света. В 1860-х и 1870-х теория света, казалось, наконец была завершена, когда великий шотландский физик Джеймс Клерк Максвелл установил существование волн, связанных с изменением электрического и магнитного полей. Электромагнитное излучение, по предположению Максвелла, имело череду сильных и слабых электрических и магнитных полей, подобно гребням и впадинам на поверхности волн воды. В 1887 году Генрих Герц сумел произвести передачу и прием электромагнитного излучения в форме радиоволн, которые подобны волнам света, однако имеют гораздо большую длину. В конце концов волновая теория света была завершена, но лишь с тем чтобы вновь быть перевернутой великой революцией в научном понимании со времен Ньютона и Галилея. К концу XIX столетия лишь дурак или гений мог считать свет корпускулярным. Таким человеком стал Альберт Эйнштейн, однако, перед тем как мы поймем, почему он сделал этот смелый шаг, нам нужно обратиться глубже к идеям физики XIX столетия.

<p>Глава вторая</p></span><span></span><span><p>Атомы</p></span><span>

Многие популярные работы по истории науки рассказывают, что идея атомов восходит к древним грекам, ко времени рождения науки, и восхваляют древних ученых за их раннее понимание истинной природы материи. Однако такой взгляд немного преувеличен. Демокрит из Абдеры, умерший около 370 года до н. э., действительно предполагал, что сложная природа мироздания может быть объяснена, если все предметы состоят из различных неизменяемых и находящихся в постоянном движении атомов, каждый тип которых имеет собственную форму и размер. «Существуют лишь атомы и пустота, все остальное – во мнении»[2], – писал он, а позже Эпикур Самосский и римлянин Лукреций Кар заимствовали эту идею. Но этой опережающей свое время теории тогда не суждено было стать основой для объяснения мироздания, и мнение Аристотеля о том, что все во Вселенной состоит из четырех «элементов» – огня, земли, воздуха и воды, – оказалось гораздо более популярным и стойким. Тогда как идея об атомах была в основном позабыта ко времени появления Христа, четыре элемента Аристотеля продержались две тысячи лет.

Перейти на страницу:

Похожие книги

Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература