Согласно модели Жакоба и Моно, сигналы из среды, окружающей клетку, могут активировать гены регуляторных белков, которые включают гены, кодирующие определенные структурные белки. Поэтому мы с Гелетом решили узнать, не задействованы ли в ключевом этапе перехода памяти из кратковременной в долговременную при сенсибилизации какие‑то аналогичные сигналы и аналогичные регуляторные белки. Мы хотели знать, не потому ли для долговременной памяти при сенсибилизации важно повторение, что оно обеспечивает передачу сигналов в ядро, вызывая активацию генов, кодирующих регуляторные белки, которые, в свою очередь, включают структурные гены, необходимые для отрастания новых синаптических связей. Если так, то консолидационная фаза работы памяти могла оказаться тем интервалом, который требуется регуляторным белкам для включения структурных генов. Тем самым мы предлагали генетическое объяснение того, что блокировка синтеза новых белков на определенном критическом промежутке времени (во время и вскоре после обучения) блокирует и отрастание новых синаптических связей, и преобразование кратковременной памяти в долговременную. Мы предположили, что, блокируя синтез белков, мы препятствуем экспрессии генов, кодирующих белки, необходимые для роста синаптических связей и тем самым для формирования долговременной памяти.
Мы обобщили свои представления в теоретической обзорной статье “Вкратце о долговременной памяти”, опубликованной в 1986 году в журнале
Чтобы проверить гипотезу, нам нужно было определить, какой сигнал поступает от синапса в ядро, найти регуляторные гены, которые этот сигнал активирует, и затем определить, какие структурные гены включаются этими регуляторными генами, то есть какие гены отвечают за отрастание новых синапсов, лежащее в основе формирования долговременной памяти.
Упрощенные нейронные цепи, которые мы получили в тканевой культуре (единственный сенсорный нейрон, связанный с единственным мотонейроном), давали нам биологическую систему, вполне подходящую для проверки наших идей. В чашках с этой культурой мы использовали серотонин в качестве возбуждающего сигнала, поступающего на сенсорный нейрон при сенсибилизации. Однократное введение серотонина (соответствующее однократному удару током в ходе обучения) говорило клетке о том, что раздражитель имеет сиюминутное, кратковременное значение, а пятикратное введение (соответствующее пятикратному повторению удара в ходе обучения) предупреждало о длительном, долговременном значении раздражителя. Мы установили, что введение в сенсорный нейрон циклического АМФ в высокой концентрации вызывает не только кратковременное, но и долговременное повышение силы синапса. В нашей работе принял участие Роджер Цянь из Калифорнийского университета в Сан-Диего, и мы воспользовались разработанным им методом, который позволял увидеть, где в пределах нейрона сосредоточены циклический АМФ и протеинкиназа A. Мы обнаружили, что однократное введение серотонина повышает концентрацию циклического АМФ и протеинкиназы A преимущественно в районе синапса, а многократное приводит к еще более высоким концентрациям циклического АМФ, которые вызывают поступление протеинкиназы A в ядро, где она обеспечивает активацию генов. Последующие исследования показали, что активация генов осуществляется протеинкиназой A с помощью другой киназы, так называемой
Тем самым мы подтвердили нашу гипотезу: для того чтобы многократное обучение вызвало долговременную сенсибилизацию (показывающую, что повторение – мать учения), необходимо, чтобы в ядро поступили соответствующие сигналы в форме киназ. Что делают эти киназы, оказавшись в ядре? Из опубликованных незадолго до того работ, выполненных на клетках, не относящихся к нервной системе, мы знали, что протеинкиназа A может активировать регуляторный белок