Неудивительно, что от использования этой исследовательской стратегии меня отговаривали несколько ведущих нейробиологов, в том числе Экклс. Его возражения отчасти отражали существовавшую в нейробиологии того времени иерархию приемлемых исследовательских задач. Хотя некоторые ученые и занимались поведением беспозвоночных, их работу не считали чем‑то важным (более того, во многом игнорировали) большинство ученых, работавших с мозгом млекопитающих. Еще более серьезным возражением для меня было скептическое отношение компетентных психологов и психоаналитиков к возможности узнать что‑то интересное о психических явлениях высшего порядка, таких как обучение и память, сосредоточившись на отдельных нервных клетках, тем более на клетках беспозвоночного. И все же я принял решение. Единственный оставшийся без ответа вопрос состоял в том, какое беспозвоночное лучше всего подходит для исследования обучения и памяти на клеточном уровне.
В Национальных институтах здоровья были прекрасные условия не только для того, чтобы проводить собственные исследования, но и чтобы быть в курсе последних достижений биологии. В течение каждого года большинство выдающихся ученых, занимавшихся мозгом, хоть раз появлялись в кампусе институтов. В результате у меня была возможность говорить со многими людьми и посещать семинары, на которых я узнавал о достоинствах различных беспозвоночных животных (таких как раки, омары, пчелы, мухи, наземные улитки и круглые черви аскариды) в качестве экспериментальных объектов.
Я хорошо помнил описанные Куффлером достоинства сенсорных нейронов раков как объекта для изучения свойств дендритов. Но я решил, что раки мне не подходят: хотя у них есть несколько очень крупных аксонов, тела их нейронов не слишком велики. Я хотел выбрать животное, у которого был бы какой‑нибудь простой рефлекс, способный видоизменяться в результате обучения и управляемый небольшим числом крупных нейронов, весь проводящий путь которых, от входа до выхода, можно было бы проследить. Это позволило бы мне искать связи между изменениями рефлекса и изменениями, происходящими в нейронах.
9–2.
После почти шести месяцев усердных размышлений о том, какое животное подойдет для исследований, я остановился на аплизии – крупном морском брюхоногом моллюске. На меня произвели большое впечатление две лекции о нем. Одну из них читала Анжелика Арванитаки-Халазонитис, уже пожилая дама и очень крупный ученый. Именно она открыла аплизию как удобный объект для исследования сигнальных свойств нейронов. Другую лекцию читал Ладислав Тауц, молодой человек, открывший новое биофизическое направление в исследовании механизма работы нейронов.
Первое упоминание аплизии содержится в энциклопедическом труде Плиния Старшего “Естественная история”, написанном в i веке н. э. Во ii веке она была вновь упомянута Галеном. Эти античные ученые называли аплизию
9–3. Нервная система аплизии очень проста. Она состоит из 20 тыс. нейронов, собранных в девять отдельных узлов, или ганглиев. Поскольку в каждом ганглии содержится сравнительно немного клеток, исследователь способен выявлять простые формы поведения, которыми управляет каждый ганглий. После этого можно изучать изменения, происходящие в конкретных клетках, когда поведение моллюска изменяется в результате обучения.
Американский вид аплизии, который живет у берегов Калифорнии (