Другие ученые, особенно исследователи нервной системы беспозвоночных, отстаивали представление о том, что многие, а возможно и все, нейроны уникальны. Эту идею впервые выдвинул немецкий биолог Рихард Гольдшмидт в 1908 году. Гольдшмидт изучал один из ганглиев круглого червя аскариды – примитивного кишечного паразита. Он обнаружил, что почти у всех организмов этого вида в данном ганглии содержалось одинаковое число клеток, занимающих в точности одно и то же положение. В написанном в тот год и ставшем теперь знаменитым письме в Германское зоологическое общество он отмечал “почти пугающее постоянство элементов нервной системы: в центре находятся 162 ганглиозные клетки, ни одной больше и ни одной меньше”.
Анжелика Арванитаки-Халазонитис знала о работах Гольдшмидта по аскариде и в пятидесятых годах изучила абдоминальный ганглий аплизии в поисках индивидуально опознаваемых клеток. Она обнаружила несколько таких клеток, которые можно было опознать у каждого организма, судя по их положению, характеру окрашивания пигментами и размеру. Одной из таких клеток была
13–4. Идентификация отдельных нейронов в абдоминальном ганглии аплизии. Клетка
Открытие того, что нейроны неповторимы и что одна и та же клетка находится в одном и том же месте у всех представителей вида, приводило к новым вопросам. Неизменны ли также и синаптические связи между этими неповторимыми нейронами? Всегда ли определенная клетка передает сигналы одним и тем же клеткам-мишеням и никаким другим?
К собственному удивлению, я обнаружил, что могу легко картировать синаптические межклеточные связи. Вводя микроэлектрод в клетку-мишень и вызывая потенциалы действия в других клетках ганглия, проверяя их по одной, я мог находить многие из пресинаптических клеток, передающих сигналы на клетку-мишень. В результате аплизия стала первым животным, для которого была установлена возможность картировать работающие синаптические связи между отдельными клетками. Этот метод можно было использовать для выявления нейронных цепей, управляющих конкретными формами поведения.
Я нашел такую же специфичность связей между отдельными нейронами, какую Сантьяго Рамон-и-Кахаль обнаружил между популяциями нейронов. Более того, оказалось, что функции синаптических связей между нейронами так же постоянны, как сами нейроны и их связи. Это удивительное постоянство упрощало достижение той цели, которую я наметил для себя в перспективе: “поймать” поведение в простом наборе нейронных связей, чтобы узнать, как в ходе обучения на клеточном уровне возникает память.
К 1969 году нам с Купферманом удалось идентифицировать большинство клеток, обеспечивающих работу рефлекса втягивания жабр. Для этого мы ненадолго анестезировали животное, чтобы сделать небольшой надрез на его шее, а затем осторожно вынимали абдоминальный ганглий и связанные с ним нервы и размещали их на освещенном столике микроскопа. Мы вводили в различные нейроны двухствольные микроэлектроды, которыми пользовались для регистрации потенциалов и стимуляции клеток. Эта операция на живом организме позволяла сохранять его нервную систему неповрежденной и благодаря этому одновременно наблюдать за органами, которыми управляет абдоминальный ганглий. Для начала мы занялись поиском мотонейронов, управляющих рефлексом втягивания жабр, то есть двигательных клеток, аксоны которых ведут наружу из центральной нервной системы к жабрам. Мы делали это, по одной стимулируя клетки ганглия микроэлектродом и отслеживая, вызывает ли стимуляция движения жабр.
13–5. Обнаружение мотонейрона, ответственного за определенную форму поведения аплизии. После идентификации отдельных нейронов абдоминального ганглия аплизии появилась возможность картировать их связи. Например, стимуляция клетки