Они смогли вернуться к исследованиям только в 1945 году. Поработав некоторое время с Бернардом Кацем в Университетском колледже Лондона (пока Хаксли готовился к свадьбе), Ходжкин выяснил, что фаза нарастания (в ходе которой мембранный потенциал растет и достигает пика) зависит от количества натрия во внеклеточной жидкости, а на фазу реполяризации (повторного снижения мембранного потенциала) влияет концентрация калия. Это открытие заставило Ходжкина и Хаксли предположить, что некоторые из ионных каналов клетки избирательно проницаемы для натрия и открываются только на время фазы нарастания, в то время как другие каналы открываются только на время фазы реполяризации.
Чтобы непосредственно проверить эту идею, Ходжкин, Хаксли и Кац применили к гигантскому аксону кальмара метод фиксации потенциала – недавно разработанную технологию, позволяющую измерять ток ионов через клеточную мембрану. Они вновь подтвердили вывод Бернштейна, что потенциал покоя создается неравномерным распределением ионов калия по разные стороны клеточной мембраны. Кроме того, они подтвердили и свое собственное наблюдение, что после достаточно сильной электрической стимуляции мембраны ионы натрия поступают в клетку в течение приблизительно 0,001 секунды, меняя напряжение на мембране с –70 до +40 милливольт и тем самым обеспечивая фазу нарастания потенциала действия. За усиленным притоком натрия почти сразу следует резкое усиление оттока калия, которое обеспечивает реполяризацию мембраны и возвращает мембранный потенциал к его исходному значению.
Но как клеточная мембрана регулирует эти изменения проводимости для ионов натрия и калия? Ходжкин и Хаксли предположили, что существуют ионные каналы особого, ранее не предвиденного класса, у которых имеются “дверцы” или “ворота”, способные открываться и закрываться. Согласно их гипотезе, по мере распространения потенциала действия по аксону ворота натриевых, а сразу вслед за ними и калиевых каналов открываются и вскоре закрываются. Ходжкин и Хаксли также поняли, что, поскольку эти ворота открываются и закрываются очень быстро, воротный механизм должен регулироваться разностью потенциалов на клеточной мембране. Поэтому они назвали такие натриевые и калиевые каналы потенциал-зависимыми каналами (
Когда нейрон пребывает в состоянии покоя, потенциал-зависимые каналы закрыты. Когда стимулятор повышает мембранный потенциал до порогового уровня, например с –70 до –55 милливольт, потенциал-зависимые натриевые каналы открываются, и ионы натрия устремляются внутрь клетки, вызывая краткое, но резкое увеличение количества положительных зарядов и поднимая мембранный потенциал до +40 милливольт. В ответ на это изменение мембранного потенциала натриевые каналы, открывшись на некоторое время, закрываются, а потенциал-зависимые калиевые каналы ненадолго открываются, увеличивая отток положительно заряженных ионов калия из клетки и быстро возвращая мембранный потенциал к состоянию покоя, – 70 милливольт (рис. 5–5).
5–5. Модель потенциала действия Ходжкина – Хаксли, полученная благодаря использованию внутриклеточного электрода. Приток положительно заряженных ионов натрия (Na+) меняет суммарный заряд внутри клетки и вызывает нарастание потенциала действия. Почти сразу открываются и калиевые каналы, и ионы калия (K+) вытекают из клетки, обеспечивая реполяризацию мембраны и возвращая мембранный потенциал на исходный уровень.
Каждый потенциал действия оставляет клетку с чем должно быть, количеством натрия внутри и с количеством калия снаружи. Ходжкин выяснил, что этот дисбаланс исправляется особым белком, который транспортирует избыточные ионы натрия из клетки, а ионы калия – в клетку. В конечном итоге исходные градиенты концентраций натрия и калия восстанавливаются.
После того как потенциал действия возникает на одном участке аксона, создаваемый при этом ток возбуждает соседние участки, вызывая потенциал действия и на них. Происходящая в результате цепная реакция обеспечивает передачу потенциала действия по всей длине аксона от места, где он был вызван первоначально, до окончаний аксона, подходящих к другому нейрону (или мышечной клетке). Этим способом от одного конца нейрона к другому передаются сигналы, обеспечивающие зрительные ощущения, движения, мысли и воспоминания.