Последовательность биохимических реакций, которую мы искали, должна была служить двум принципиальным целям. Во-первых, эти реакции должны были преобразовывать непродолжительное воздействие серотонина в молекулы, сигнал которых сохранялся бы внутри сенсорного нейрона в течение минут. Во-вторых, молекулы должны были передавать сигнал от клеточной мембраны, на которую действует серотонин, во внутреннюю среду клетки — в особые участки окончаний аксона, задействованные в выделении глутамата. Мы подробно изложили эти мысли в своей статье 1971 года, опубликованной в Journal of Neurophysiology, и высказали предположение, что в этом процессе могут быть задействованы молекулы одного особого вещества — так называемого циклического АМФ.
Что такое циклический АМФ? И почему мы сочли его вероятным претендентом на эту роль? Мне пришел в голову именно циклический АМФ в связи с тем, что было известно: небольшие молекулы этого вещества служат важнейшими регуляторами передачи сигналов в мышечных и жировых клетках. Мы с Джимми знали, что природа консервативна, поэтому механизм, используемый в клетках одной ткани, с большой вероятностью сохранится и будет использоваться в клетках другой. Эрл Сазерленд из Западного резервного университета Кейса в Кливленде в то время уже обнаружил, что гормон адреналин (эпинефрин) вызывает непродолжительные биохимические изменения на поверхности мембраны жировых и мышечных клеток, приводя к более продолжительным изменениям внутри клеток. Эти более продолжительные изменения происходят за счет повышения содержания циклического АМФ во внутренней среде клеток.
Революционные открытия Сазерленда были впоследствии описаны так называемой теорией вторичных посредников (вторичных мессенджеров). Основой этой теории биохимической передачи сигналов в клетках стало открытие на поверхности жировых и мышечных клеток нового класса рецепторов, реагирующих на гормоны. Бернард Кац ранее описал медиатор-зависимые рецепторы, которые относятся к так называемым ионотропным рецепторам. Когда с таким рецептором связывается нейромедиатор, он открывает или закрывает ворота проходящего сквозь этот рецептор ионного канала, тем самым преобразуя химический сигнал в электрический. Но в рецепторах нового типа, так называемых метаботропных, нет ионного канала, который они могли бы открывать и закрывать. Один участок этих рецепторов, выступающий из наружной поверхности клеточной мембраны, опознает сигналы, приходящие от других клеток, а второй участок, выступающий из внутренней поверхности мембраны, запускает работу определенного фермента. Когда такие рецепторы опознают и связывают молекулы химического посредника из внеклеточной жидкости, они активируют работающий внутри клетки фермент аденилатциклазу, который вырабатывает циклический АМФ.
У этого процесса есть преимущество — он позволяет многократно усиливать клеточную реакцию. Когда одна молекула химического посредника связывается с метаботропным рецептором, он активирует аденилатциклазу, которая производит тысячи молекул циклического АМФ. Затем циклический АМФ связывается с особыми белками, запускающими во всей клетке целый ряд молекулярных реакций. При этом аденилатциклаза продолжает вырабатывать циклический АМФ в течение минут. Поэтому метаботропные рецепторы обычно действуют сильнее, шире и дольше, чем ионотропные. Действие ионотропных рецепторов обычно продолжается миллисекунды, а действие метаботропных — секунды или минуты, то есть в тысячи или десятки тысяч раз дольше.
Чтобы отличать две разделенные в пространстве функции метаботропных рецепторов, Сазерленд назвал химический посредник, который связывается с рецептором на наружной стороне клеточной мембраны, первичным, а циклический АМФ, вырабатываемый внутри клетки для передачи сигнала, вторичным. Сазерленд доказывал, что вторичный посредник передает внутрь клетки сигнал, поступающий от первичного, на мембрану и вызывает реакцию на этот сигнал по всей клетке (рис. 16–2). Представление о вторичных посредниках заставило нас предположить, что метаботропные рецепторы и циклический АМФ могут оказаться теми неуловимыми факторами, которые обеспечивают связь медленного синаптического потенциала сенсорных нейронов с усиленным выделением глутамата, тем самым обеспечивая работу кратковременной памяти.