Чтобы электрические заряды могли проходить сквозь мембрану нервной клетки, мембрана должна быть проницаема для некоторых ионов внеклеточной жидкости или цитоплазмы. Но каких именно? Проверив ряд предположений экспериментально, Бернштейн пришел к смелому выводу, что в состоянии покоя клеточная мембрана непроницаема для всех ионов, кроме одного — калия. Он доказывал, что в клеточной мембране должны быть специальные отверстия, которые теперь называют ионными каналами. Эти каналы позволяют ионам калия, и только им, спокойно вытекать по градиенту концентрации из клетки, где их концентрация высока, наружу, где их концентрация ниже. Ионы калия заряжены положительно, поэтому, когда они выходят из клетки, внутри клеточной мембраны образуется небольшой избыток отрицательных зарядов, связанных с находящимися в цитоплазме белками.
Однако по мере того, как ионы калия выходят из клетки, их все больше притягивает обратно суммарный отрицательный заряд, возникающий в связи с их выходом. Поэтому наружная поверхность клеточной мембраны покрывается положительными зарядами ионов калия, вышедших из клетки, а внутренняя — отрицательными зарядами белков, которые пытаются затянуть ионы калия обратно. Возникающее равновесное состояние обеспечивает постоянный мембранный потенциал на уровне -70 милливольт (рис. 5–3).
Эти принципиальные открытия, касающиеся механизма поддержания потенциала покоя нервными клетками, подвели Бернштейна к следующему вопросу. Что происходит, когда нейрон стимулируют достаточно сильно, чтобы вызвать возникновение потенциала действия? Бернштейн воздействовал на аксон нервной клетки электрическим током работающего на батарейках стимулятора и заключил, что избирательная проницаемость клеточной мембраны во время потенциала действия очень ненадолго перестает работать, позволяя всем ионам свободно входить в клетку и выходить из нее и доводя мембранный потенциал до нуля. Исходя из этих соображений, потенциал действия, который изменяет мембранный потенциал от -70 до 0 милливольт, должен иметь амплитуду 70 милливольт.
Мембранная гипотеза, сформулированная Бернштейном, была весьма убедительна — отчасти благодаря тому, что в ее основе лежали давно установленные принципы движения ионов в растворах, а отчасти благодаря своей красоте. Потенциалы покоя и действия не требовали сложных биохимических реакций, а просто использовали энергию, накопленную градиентами концентраций ионов. В целом же сформулированная Бернштейном гипотеза наряду с выводами Гальвани и Гельмгольца убедительно свидетельствовала, что физические и химические законы позволяют объяснять даже некоторые аспекты работы психики — передачу сигналов по нервной системе, а значит, и Управление поведением. Отпадала нужда в «жизненной силе» и других явлениях, не поддающихся объяснению в физических и химических терминах, для таких явлений не оставалось места.
Четвертая фаза была временем ионной гипотезы и трудов Алана Ходжкина, самого выдающегося из учеников Эдриана, и Эндрю Хаксли, талантливого ученика и коллеги самого Ходжкина (рис. 5–4). Сотрудничество Ходжкина и Хаксли было тесным и плодотворным. Ходжкину было свойственно глубокое понимание природы и истории изучения работы нервных клеток. Прекрасный экспериментатор и превосходный теоретик, он всегда искал общий смысл, стоящий за непосредственными результатами. Хаксли был одарен технически и блистал в математике. Он изобрел новые способы регистрации и визуализации работы сдельных клеток и разработал математические модели я описания данных, которые они с Ходжкином получили, их сотрудничество было тем, чем должно быть: вместе они значили больше, чем по отдельности.