Читаем В помощь радиолюбителю. Выпуск 12 полностью

Рис. 38.Принципиальная схема регулятора яркости

При замыкании контактов выключателя SB1 каждым полупериодом сетевого напряжения через резистор R5 начинает заряжаться конденсатор С2. По мере его заряда нарастает яркость свечения лампы светильника. Транзистор VT1 в это время заперт, так как постоянная времени заряда конденсатора С1 через резистор R1 значительно больше постоянной времени заряда С2. По мере заряда С1 сопротивление канала полевого транзистора VT1 уменьшается и яркость свечения лампы нарастает. Таким образом, время нарастания яркости определяется емкостью С1. После выключения светильника конденсатор С1 разряжается в течение 100 с. Поэтому повторное включение в течение этого срока не будет сопровождаться плавным нарастанием яркости.

Амплитудное значение сетевого напряжения составляет 311 В. Поэтому вместо тиристора КУ202К, для которого предельное напряжение в запертом состоянии составляет 300 В, нужно использовать тиристор КУ202М или КУ202Н.

Следует учесть, что вся система находится под напряжением сети переменного тока. Поэтому налаживание следует выполнять с соблюдением правил техники безопасности.

Эскиз печатной платы показан на рис. 39.

Рис. 39.Эскиз печатной платы регулятора яркости

<p>6.3. Сенсорный выключатель светильника</p>

Нечаев И. [26]

Предлагаемое устройство обеспечивает включение лампы светильника с помощью сенсора, то есть с полной гальванической развязкой пользователя и электросетью.

Принципиальная схема сенсорного выключателя приведена на рис. 40.

Рис. 40.Принципиальная схема сенсорного выключателя

Устройство питается от сети переменного тока напряжением 220 В с помощью выпрямительного моста VD5-VD8. В одну диагональ моста включена лампа светильника, а в другую — тиристор VS1. Лампа горит только в том случае, если тиристор открыт. Максимальная мощность лампы определяется допустимым выпрямленным током диодов моста и при использовании диодов КД105Б составляет 100 Вт.

Цифровая часть схемы содержит микросхемы DD1 — четыре триггера Шмитта и DD2 — два D-триггера, из которых используется только один. В исходном состоянии после подключения схемы к сети триггер Шмитта DD1.1 благодаря положительной обратной связи через резистор R1 генерирует положительные импульсы с частотой повторения примерно равной 10 кГц. Через резистор R2 и конденсатор связи С2 эти импульсы поступают на вход 12 триггера DD1.2. Переменным резистором R2 устанавливают минимальный уровень импульсов, при котором срабатывает DD1.2. Импульсная последовательность на выходе 11 DD1.2 приводит к заряду конденсатора С4 через диод VD1 во время импульса и к разряду этого конденсатора через резистор R4 — во время паузы. В связи с тем, что постоянная времени заряда меньше, чем разряда, напряжение на С4 нарастает и достигает максимума. Тогда на выходе элемента DD1.3 образуется низкий уровень, также низким будет уровень на прямом выходе 1 элемента DD2.1, и высокий уровень создается на выходе элемента DD1.4 и на базе транзистора VT1. Поэтому транзистор заперт и также заперт тиристор VS1, а лампа светильника не горит.

Прикосновение к сенсору Е1 приводит к появлению емкости на землю, благодаря чему уровень импульсов, поступающих на вход 12 DD1.2, уменьшается. Поэтому элемент DD1.2 не переключается, конденсатор С4 не заряжается, на выходе DD1.3 и на выходе 1 элемента DD2.1 образуется высокий уровень, а на выходе DD1.4 и на базе транзистора VT1 — низкий. В результате отпираются транзистор VT1 и тиристор VS1, что приводит к зажиганию лампы светильника.

Эскиз печатной платы с размещенными на ней элементами схемы приведен на рис. 41.

Рис. 41.Эскиз печатной платы сенсорного выключателя

Необходимо заметить, что указанный на схеме тиристор КУ202К допускает приложение к нему в запертом состоянии напряжения, не превышающего 300 В, а амплитудное значение напряжения сети составляет 311 В. Поэтому вместо тиристора КУ202К следует использовать КУ202М или КУ202Н, рассчитанные на приложение напряжения до 400 В.

<p>6.4. Светорегулятор с выдержкой времени</p>

Бжевский Л. [27]

Назначение этого регулятора помимо возможности вручную регулировать яркость свечения лампы накаливания состоит в значительном увеличении срока ее службы благодаря тому, что при включении полное напряжение питания подается на лампу с выдержкой времени. Сопротивление холодной нити лампы накаливания почти в 10 раз меньше, чем разогретой. Поэтому при прямом включении пусковой ток также в 10 раз превышает рабочий, что и является причиной частого выхода из строя ламп накаливания.

Принципиальная схема устройства приведена на рис. 42.

Рис. 42.Принципиальная схема светорегулятора

Перейти на страницу:

Все книги серии Электроника своими руками

Похожие книги

Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника