Читаем В просторы космоса, в глубины атома [Пособие для учащихся] полностью

Обсуждается и очень дорогой проект ДЮМАНД — укрытая в океане под многометровой толщей воды система фотоэлектронных приборов, которые караулят слабые вспышки света, вызванные в самой морской воде космическими частицами. Проект обсуждается уже много лет, но к его осуществлению пока еще никто не приступает. Очень возможно, что путь от идеи этого проекта к реальности резко сократится благодаря сравнительно недавнему предложению советских физиков Г. Аскарьяна и Б. Долгошеина. Они предложили регистрировать не световые вспышки, а звуковые импульсы, сопровождающие рождение ливней космических частиц в воде. Такие ливни возникают, когда нейтрино гигантских энергий разрушает ядро. Регистрировать звук значительно удобней, чем свет, в частности, потому, что звуковая волна хорошо распространяется в воде и индикаторы звука можно располагать на значительно большем расстоянии, чем индикаторы света, увеличив тем самым общий объем подводного детектора. Или можно уменьшить число индикаторов, сделать «сеть» более редкой при том же контролируемом объеме роды. Именно от этого объема зависит число пойманных нейтрино Предложение советских физиков вызвало большой интерес, предполагается, что оно может в сотни и тысячи раз повысить эффективность системы.

Уникальное сооружение нейтринной астрофизики создается в нашей стране на Северном Кавказе — в долине реки Баксан строится крупная многоцелевая нейтринная обсерватория Института ядерных исследований АН СССР, для нее сооружается четырехкилометровый горизонтальный тоннель с большими лабораторными залами.

Это будут лаборатории с чрезвычайно низким и даже рекордно низким уровнем радиационного фона (рис. 2) — с верху они закрыты тысячеметровой гранитной крышей, а изнутри облицованы особыми сортами бетона с очень слабой собственной радиоактивностью. А снижение фона есть прямой путь к регистрации слабых «сигналов» — в тихой комнате можно услышать тиканье карманных часов, но вряд ли это удастся сделать в салоне самолета.



Нашу экскурсию на Баксанскую станцию комментируют директор Института академик АН Грузинской ССР А. Н. Тавхелидзе, члены-корреспонденты АН СССР Г. Т. Зацепин и А. Е. Чудаков, доктор физико-математических наук А. А. Поманский — физики, отдавшие новому делу годы жизни и мегаджоули энергии. Здесь наверняка уместно вспомнить и коллектив Института ядерных исследований, взявший на себя большой комплекс работ — от расчета сечений ядерных реакций до организации строительства в горных условиях, с тем чтобы крупнейшие в мире установки нейтринной астрофизики стали реальностью. И конечно же, когда речь заходит о Баксанской обсерватории, непременно должно быть названо имя секретаря Отделения ядерной физики АН СССР академика М. А. Маркова, который от самого начала вдохновляет и направляет эти работы как в чисто научном, так и в организационном плане.

Осмотрев входные тоннели и вспомогательные помещения (обсерватория— это не только научные приборы, это еще и системы энергоснабжения, искусственного холода, отопления, вентиляции, обработки данных, транспорта, связи, пожарной безопасности), мы попадаем в первый лабораторный зал. Это владения огромной многоэтажной установки для регистрации космических мю-мезонов высоких энергий и некоторых энергичных нейтрино. Каждый из 3200 детекторов установки (рис. 3) — это бак с жидким сцинтиллятором, в который неотрывно всматривается электронный глаз ФЭУ — фотоэлектронного умножителя. Под действием прорвавшейся в детектор частицы в нем может произойти событие, так физики называют интересующую их ядерную реакцию. В веществе сцинтиллятора событие вызовет слабую световую вспышку, вспышку заметит ФЭУ и выдаст электрический импульс в систему регистрации; если частица прошьет несколько детекторов, то можно будет определить, откуда она пришла и с какой скоростью. Этот гигантский сцинтилляционный телескоп будет участвовать в целом комплексе астрофизических исследований.



Во второй лабораторный зал мы не пойдем по уважительной, наверное, причине — туда еще не добрались строители, и этот зал существует пока лишь в виде чертежей, планов и опытных образцов аппаратуры. Мы видим действующую модель будущего гигантского хлор-аргонового детектора — это будет бак высотой с трехэтажный дом и длиной более 30 м (рис. 2, А). В баке — 3000 т тетрахлорэтилена, в 5 раз больше, чем у Девиса; это позволит более точно оценить количество некоторых разновидностей солнечных нейтрино.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже