Слово «фаза» имеет вполне определенный житейский смысл («Эта фаза моей жизни»). Имеет оно и строгое определение физического параметра. Не вдаваясь в тонкости, введем упрощенное определение фазы — будем считать, что это тот момент времени, когда в волноприемник попадает амплитуда волны. Скажем, когда с берегом поравняется гребень волны, бегущей по воде, или когда к антенне радиоприемника подойдет самый сильный участок электрического поля, которое несет радиоволна. Стоя на берегу пруда, мы сможем с помощью точного секундомера отмечать фазу: «У этой волны фаза 7 ч 20 мин 6 с — именно в этот момент ее гребень поравнялся с кромкой берега. А у этой волны фаза 7 ч 26 мин 8 с, у следующей — 7 ч 26 мин 10 с…»
Ну а теперь до интерферометра остался один шаг: посмотрите, в какой фазе приходит волна к двум разным точкам берега — слева и справа от вас. Если волна приходит одновременно, в одной фазе, то, значит, «излучатель» находится строго напротив (рис. 1), если в левую точку волна приходит чуть раньше, с опережением по фазе, то, значит, «излучатель» находится слева (рис. 2), а если раньше приходит правая волна, «излучатель» находится справа.
Как видите, индивидуальный подход к набегающей волне, наблюдение за ее фазой позволили получить совершенно новую информацию об источнике излучений. И вообще нужно сказать, что уважительное отношение к фазе, скажем, умение собирать волны в большие коллективы не просто так, «давай! давай!..», а с учетом особенностей каждой волны, с учетом ее фазы ознаменовало в физике целую эпоху великих открытий.
Именно уважение к фазе подарило нам рентгеноструктурный анализ (сопоставляя фазы рентгеновских лучей, отраженных от разных точек кристалла, узнают его структуру), голографию (учитывая фазы световых волн, отображают объем на плоской пленке), квантовые генераторы и, в частности, лазеры (чем отличается лазер от электрической лампочки? Прежде всего тем, что в лампочке атомы излучают свет каждый сам по себе и возникает хаос, вакханалия световых волн, а в лазере совсем иная культура излучения — атомы выбрасывают световые волны согласованно, волны эти когерентны — они совпадают по фазе и действуют сообща).
Наконец, умение уважать фазу подарило нам огромный класс измерительных приборов — интерферометров (рис. 3), к числу которых относится и наш межконтинентальный радиотелескоп. Чтобы легче разобраться в его возможностях и проблемах, бросим прощальный взгляд на затянутый туманом пруд, вспомним свои интерферометрические опыты и сделаем два важных примечания: чем точнее измеряется разность фаз, тем точнее можно определить направление на излучатель волн; чем больше база интерферометра (расстояние между точками, в которых измеряется фаза), тем больше сдвиг (набег) фаз и опять-таки тем точнее можно определить направление на излучатель.
Эти примечания помогают понять, какими способами можно бороться за самую важную характеристику радиотелескопа-интерферометра — его угловую разрешающую способность, угловое разрешение, т. е. способность с высокой точностью различать источники излучений и их детали.
Лет тридцать назад, еще на заре радиоастрономии, делались первые попытки объединить несколько радиотелескопов в единую систему, но базу больше сотни километров сделать не удавалось. Многие препятствия были связаны с тем, что радиоизлучения, которые принимают антенны телескопов, имеют очень высокую частоту, а значит, время между соседними «гребнями» очень мало, мал период колебаний. Для сантиметровых волн, на которых по ряду причин удобней всего производить наблюдения, один период, т. е. один рабочий цикл интерферометра, как раз и попадает в интервал 3·10-10
— 3·10-11 с. В этом интервале находится цифра, с которой мы начали наш рассказ. И совсем уже мал сдвиг фаз — разница во времени, когда к антеннам интерферометра приходит гребень волны: чтобы измерить этот сдвиг фаз, все агрегаты комплекса, все радиотелескопы должны начинать отсчет фазы по выстрелу единого стартового пистолета, отбивающего время с точностью 10-12 % (ошибка на 1 с за полмиллиона лет).Легко сказать «…по единому выстрелу… с точностью до 10-12
%», но как это сделать? Как это сделать, если между телескопами тысячи километров?Для начала перечислим три способа, которые позволяют получить базу от нескольких километров до нескольких десятков километров. Высокочастотные сигналы с каждой из антенн можно передать на общий электронный блок, измеряющий разность фаз, по высокочастотному кабелю (рис. 5 на третьем листе цветной вклейки).
Можно сделать то же самое, предварительно понизив частоту обоих сигналов в индивидуальных смесителях, (рис. 6), но с использованием общего гетеродина. Наконец можно связать антенны с единым измерительным комплексом с помощью каналов радиосвязи (рис. 7). Во всех этих случаях в разных участках системы возникают дополнительные сдвиги фаз, они суммируются, что как раз и препятствует увеличению базы.