Читаем В просторы космоса, в глубины атома полностью

Но позвольте: кто вообще двигает мяч по площадке? Ведь сами игроки управляют только ракетками…

Движение мяча, все его отскоки, исчезновения, появления, как и множество других важных дел, осуществляет самый главный блок телевизионной игры — вычисляющее устройство (рис. 5).



Его работу в предельно упрощенном виде можно описать так. В этом блоке все начинается с дирижера. Это вспомогательный тактовый генератор, он выдает бесконечные пулеметные очереди импульсов высокой частоты — обычно миллион импульсов в секунду. Если бы все они попали на управляющий электрод кинескопа, то на экране появился бы монотонный «горошек»— тысячи точек, расположенных ровными рядами. (При существующем стандарте — 625 строк — на экране в принципе можно поставить около 300 000 точек, но в простейшей телевизионной игре такая детализация картинки не нужна.) На пути к кинескопу тактовые импульсы проходят через основные элементы вычисляющего устройства — счетчики импульсов, собранные из цепочек триггеров, и логические элементы, умеющие рассуждать таким примерно образом: «Если ко мне на вход придут одновременно 573-й и 826-й импульсы, зажгу точку…» Или: «Если 128-й импульс появится вместе с 2593-м, не зажгу точку…» Счетчики и логические элементы соединены между собой строго определенным образом, они работают по заданной программе. В итоге из ровного частокола импульсов остаются только те, которые в соответствии с правилами игры и игровой обстановкой в нужном месте экрана высвечивают мячик. А в следующий момент с учетом того, какие точки светились раньше, мячик передвигается в следующую точку траектории. Вычисляющее устройство, сформировав необходимые наборы импульсов, рисует границы площадки, ведет счет.

Обо всем этом, конечно, лишь рассказывать просто. Чтобы вести даже простейшую игру, нужны вычисляющие устройства с сотнями схемных узлов, состоящие из тысяч элементов — конденсаторов, транзисторов, резисторов, диодов. Если бы такой вычисляющий блок создавался лет двадцать назад и собирался из отдельных деталей, то он занял бы большой шкаф. Только интегральные схемы сделали телевизионную игру реальностью — все ее управляющее устройство вмещается сейчас в кремниевой пластине размером с клеточку арифметической тетради.

Вычисляющее устройство телевизионной игры — это самый настоящий компьютер, хотя его и не принято так называть. Не принято скорее всего потому, что уже родилось новое поколение игр, в которых имеется программируемый процессор — главный вычисляющий блок ЭВМ. Процессор позволяет резко расширить ассортимент развлечений, усложнить условия игры и даже выполнить некоторые полезные работы. Так, в одной из моделей процессор дает возможность рисовать на экране цветными «карандашами» и даже сам рисует орнаменты и несложные мультипликации. В другой модели процессор вычисляет и записывает на экране оптимальную диету с учетом вашего веса — желаемого и реального. Иногда программа вводится в игру (теперь ее уже и не очень удобно так называть) с магнитной пленки, со стандартной магнитофонной кассеты. Причем программ может быть огромное множество, как говорят, все зависит от фантазии разработчика. На смену простейшему теннису уже приходят автомобильные гонки, танковые и морские сражения. В волейболе мяч летит по сложной кривой и, подобно настоящему мячу, меняет скорость в процессе полета; появляется возможность давать противнику фору, уменьшая, например, размеры своей ракетки. Правда, и простейший теннис можно несколько разнообразить: уменьшать обе ракетки, увеличивать скорость мяча, менять угол его отражения.

Телевизионные игры уже выпускаются, и каждый может приобщиться к домашнему телевизионному спорту. Хочется верить, не в ущерб настоящему теннису или волейболу, не в ущерб общению с природой и друг с другом. Так сказать, натуральному общению, без участия электроники…

Отличный мастер ТМО

В природе и в машинах ватную роль играют процессы теплообмена и массообмена, их детальное изучение нередко открывает новые возможности технического прогресса.


По-разному человек осваивал, ставил себе на службу природные явления, физические процессы. В разное время наталкивался на них, по-разному реагировал на свои открытия. Возьмем, например, электричество. Возможно, что Фалес Милетский действительно был первым, кто заметил его, и, значит, всего каких-то две тысячи лет назад состоялась наша встреча с «янтарической силой». А вот использование энергии падающей массы, в частности падающей воды, насчитывает десятки тысяч лет. И наконец, горение, живительный жар огня известны людям настолько давно, что их вполне можно отнести к началу человеческой истории. Слово писателю Рони Старшему — несколько строк из его прекрасной книги «Борьба за огонь»:

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники