Читаем В просторы космоса, в глубины атома полностью

Основные возможности БТА, конечно, определяет его главное шестиметровое зеркало. Оно должно позволить наблюдательной астрономии заметно продвинуться вперед по сравнению с достижениями недавнего мирового чемпиона — пятиметрового паломарского рефлектора. Вот некоторые цифры, показывающие, что должно дать увеличение диаметра зеркала на 1 м. Площадь зеркала возрастает примерно в 1,45 раза, и во столько же раз увеличивается улавливаемая им световая энергия. Это значит, что примерно на 30–40 % увеличится расстояние, на котором можно наблюдать слабые звездные объекты. Вместо расстояний в 5–6 млрд. св. лет, которые до сих пор были доступны оптической астрономии, мы сможем, по видимому, заглянуть на расстояния 8–9 млрд. св. лет. Доступный наблюдениям объем звездного мира зависит от куба этого расстояния, и можно предположить, что число видимых слабых объектов Вселенной увеличится в 1,6–1,7 раза, а может быть, даже в 2 раза, потому что условия наблюдений, само небо, как говорят астрономы, в Зеленчукской, по-видимому, лучше, чем в районе горы Паломар.

Приведенные цифры лишь в некоторой степени характеризуют те новые возможности, которые БТА открывает перед астрофизиками, возможности и количественные, и качественные. Инструмент позволит значительно более тщательно изучить особенности двойных звезд и иных звездных систем, в частности систем, в которых подозревают существование такого экзотического объекта, как «черная дыра». Новые возможности появятся для изучения тонких механизмов звездной энергетики, процессов рождения и умирания звезд, развития галактик. Может быть, удастся продвинуться и в понимании природы наиболее далеких жителей Вселенной — квазаров. Новую информацию, по-видимому, удастся получить и о самых близких к нам космических телах — планетах Солнечной системы. Даже в космических экспериментах сможет принять участие БТА, например, контролируя полет межпланетных станций, помогая определить их звездные координаты.

Уже на первых снимках, полученных на БТА, удалось увидеть объекты 23,5 звездной величины, а вскоре и 25 величины.

Не хотелось бы, чтобы о БТА сложилось представление просто как о большом телескопе. БТА — это огромный, сложный комплекс, комплекс оптический, механический, теплотехнический, электрический, электронный. Молодой коллектив САО делает все возможное, чтобы созданный всей страной уникальный астрофизический инструмент во всю свою силу работал на науку.


Вряд ли найдется человек, которому удалось бы уйти от наивных «почему?» касательно размеров телескопа. Действительно, почему 5 м, почему 6? Почему не 10, не 15, не 50? Почему нельзя построить гигантское зеркало размером со стадион? Например, сварить его из полированных металлических листов, подобно тому как мы свариваем корпуса супертанкеров?

Ответ на эти «почему?» во всех случаях должен начинаться с напоминания: телескоп — прибор оптический, его линзы или зеркала должны сфокусировать, собрать в точку не что иное, как свет, т. е. электромагнитные колебания с длиной волны меньше стотысячной доли миллиметра. Значит, еще меньше должны быть неровности на поверхности зеркала — морская волна легко перекатывается через небольшие камешки, не замечая их, но разбивается в брызги, наткнувшись на скалу, соизмеримую с длиной волны. Не должны выходить за пределы ничтожных долей миллиметра и изменения формы зеркала, например, из-за перераспределения механической нагрузки при повороте трубы телескопа или из-за перепадов температуры.

Заманчивая идея большого металлического зеркала проваливается с треском после того, как прикинешь, что при изменении температуры всего на 1 °C размеры пятиметрового металлического зеркала изменятся на совершенно недопустимую величину — на доли миллиметра. Температурная стабильность — одно из решающих «за» в пользу больших зеркал из особых сортов стекла. А необходимость с высочайшей точностью сохранять геометрию зеркала — одно из основных препятствий на пути создания крупных телескопов. Современный телескоп — это не просто подзорная труба, это высокоточный измерительный инструмент, ему прежде всего нужно верить.

Многие проблемы, которые приходится решать телескопостроителям, скрыты за спокойными терминами их профессионального словаря. Вот некоторые из них.

«Разгрузка зеркала» — нужно создать такие механизмы крепления зеркала, чтобы при его повороте точно перераспределяло огромный вес и не возникло заметных механических деформаций.

«Монтировка телескопа» — Земля движется по своей орбите и вращается вокруг своей оси, а поэтому движется и звездное небо над головой наблюдателя. И нужно найти способ установки трубы телескопа, найти такую его монтировку (основание с системой осей), чтобы можно было неотступно следовать за звездой, — ее изображение должно оставаться неподвижным на фотопластинке, на входе спектрографа или в поле зрения телевизионной камеры.

Перейти на страницу:

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники