Читаем В защиту науки полностью

В 1915 г. Эйнштейн создал общую теорию относительности. Двумя годами позднее он сделал попытку применить ее к изучению мира, рассматриваемого как некое единое целое. Новая теория впервые позволила поставить столь дерзкую цель в качестве точно формулируемой и притом строго решаемой научной задачи. Эйнштейн решил эту задачу и представил результат в виде физико-математической модели Вселенной. Модель описывала Вселенную как статическую, вечную и неизменную физическую систему. Во Вселенной Эйнштейна притяжение всех тел природы друг к другу… отсутствовало. Ньютоновское всемирное тяготение при этом, однако, не отменялось; но помимо него в эйнштейновской модели действовал ещё один силовой фактор — всемирное антитяготение, которое полностью компенсировало взаимное тяготение космических тел в масштабе всей Вселенной.

Ничего подобного прежняя, доэйнштейновская физика не знала. Но антитяготение не вытекало в действительности и из общей теории относительности. Это была совершенно новая идея. Она органично и в исключительно экономной форме была введена в структуру общей теории относительности, в её математические уравнения.

Антитяготение было представлено в этих уравнениях всего одной и притом постоянной физической величиной, одним числом, которое получило позднее название космологической константы.

Космологическая константа, обозначаемая греческой буквой Л (лямбда), обеспечивала в модели Эйнштейна компенсацию всемирного тяготения — без неё теория не допускала бы статичности мира.

Последнее понятно: в мире, где безраздельно господствует одно лишь всемирное тяготение, все тела должны «падать», двигаясь под действием взаимного притяжения. Статичнось, покой и вечная неизменность в таком случае совершенно невозможны.

События в космологии тех лет развивались стремительно. В 1922 г. Фридман доказал, что уравнения общей теории относительности — даже при наличии в них космологической константы — допускают не только статические модели, но и модели динамические, в которых Вселенная как целое могла расширяться или сжиматься. Фридман явно предпочитал модель расширяющейся Вселенной. Она и подтвердилась в 1929 г. в астрономических наблюдениях Хаббла.

Как только стало ясно, что во Вселенной никакого покоя на самом деле нет, многие сочли, что идея всемирного антитяготения провалилась, а в космологической константе нет нужды. Так считал и сам Эйнштейн, который однажды в разговоре с Гамо-вым назвал идею космологической константы своим самым досадным промахом в науке. Против этой идеи были и другие теоретики, среди них Л.Д. Ландау и В. Паули. Об умонастроении Ландау в 1950–1960 гг. пишет В.Л. Гинзбург: "Л.Д. Ландау даже слышать не хотел о Л-члене, но добиться от него объяснения причины такой позиции мне не удалось".

И тем не менее интерес к гипотезе Эйнштейна не пропадал. Десятилетие за десятилетием, начиная с работ В. де Ситтера и Ж. Леметра, складывалось понимание того, что же в сущности стоит за этой новой константой природы, — если только она не равна нулю. В результате возникло представление, что космологическая константа Эйнштейна описывает некую новую, совсем необычную космическую среду. Эта среда, не известная до того ни в теории, ни в эксперименте, заполняет все пространство мира с всюду и всегда одинаковой плотностью. Она действует на погруженные в неё космические тела так, что их взаимное притяжение может быть ослаблено или даже полностью устранено — как в космологической модели Эйнштейна. Более того, эта среда способна не только скомпенсировать всемирное тяготение, но и пересилить его, заставить тела не притягиваться друг к другу, а удаляться друг от друга. Такая точка зрения была впервые высказана Эрастом Борисовичем Глинером в 1965 г. Сейчас она получила самое широкое распространение.

Антигравитирующую космическую среду мы называем вакуумом Эйнштейна-Глинера. И, как уже сказано, вакуум — это отнюдь не пустота. У вакуума есть энергия, и эта энергия обладает постоянной во времени и всюду одинаковой в пространстве плотностью — и притом в любой системе отсчёта. Этим вакуум принципиально отличается от всех других форм космической среды, плотность которых неоднородна в пространстве, падает со временем в ходе космологического расширения и может быть разной в разных системах отсчета.


Открытие антитяготения

В 1998–1999 гг. две группы астрономов-наблюдателей сообщили об открытии всемирного антитяготения. В работе участвовало большое число исследователей (около ста в общей сложности), одной группой руководил Адам Райес, другой — Сол Пер-лмуттер. Астрономы обнаружили, что в наблюдаемой Вселенной присутствует вакуум, — скорее всего, именно тот вакуум Эйн-штейна-Глинера, который математически описывается космологической константой. Оказалось, что по плотности энергии он превосходит все обычные формы космического вещества вместе взятые. Вакуум создает космическое антитяготение, которое не то что компенсирует всемирное тяготение, но определенно пересиливает его и почти безраздельно управляет динамикой космологического расширения в современную эпоху.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже