Читаем В защиту науки полностью

Ситуация эта полна скрытой иронии. Лесков, говоря о ньютоновской механике, называет классическое абсолютное время "парадоксальным понятием" (хотя и не объясняет, что в нем такого уж парадоксального) и несомненно считает теорию относительности шагом вперед. Между тем мгновенная передача информации как раз и означала бы недвусмысленный возврат к абсолютному времени, поскольку позволила бы точно и однозначно синхронизировать все часы во Вселенной и придать абсолютный смысл понятию одновременности событий. По существу, вся теория относительности зиждется на невозможности передавать сигналы быстрее света. Если бы это было возможно, не только время оказалось бы абсолютным, но и расстояния были бы независимы от движения наблюдателя, а мы вернулись бы к плоскому, абсолютному пространству дорелятивистской механики. И все, что объяснила теория относительности, потребовало бы какого-то нового объяснения, потому что кривизна пространства-времени была бы исключена. Между тем кривизна эта так дорога профессору Лескову, что свою главу он заканчивает словами: "в мире ничего не происходит, кроме кручения пространства и изменения его кривизны" (с. 62). На то, чтобы понять несовместимость этого с мгновенной передачей сигналов, его квалификации, очевидно, не хватает.

"Торсионные поля — идеальное средство для связи на межзвездных расстояниях. О возможности использовать их для этой цели свидетельствуют эксперименты, проведенные в разное время Н.А. Козыревым, М.М. Лаврентьевым и А.Ф. Пугачем" (с. 41).

Надо полагать, упомянутые авторы улетали на межзвездные расстояния и присылали оттуда сообщения с помощью торсионных полей. А может быть, вступили в сношения с инопланетянами. Подробностей нам не сообщают.

"Вот пример нелинейных процессов: возьмите лист бумаги и сложите его пополам. Потом еще раз пополам — и так далее, 40 раз. Попробуйте угадать, какой толщины получится у вас эта стопка бумаги, не заглядывая на следующую строчку. А проведя нехитрый арифметический подсчет, вы получите поразительный результат — 350 000 км, расстояние от Земли до Луны!" (с. 44). Доктор физ. — мат. наук, по-видимому, полагает, что экспоненциальный рост — проявление нелинейности. На самом деле, это типичное решение именно линейных уравнений, а роль нелинейности обычно заключается в ограничении роста. Нелинейность и хаос вообще возводятся Лесковым в роль фундаментальных принципов, но что это такое и как они друг с другом связаны, он откровенно не понимает.

"Хаос — это свободная игра факторов, каждый из которых, взятый сам по себе, может показаться второстепенным, незначительным. В уравнениях математической физики такие факторы учитываются в форме нелинейных членов, т. е. таких, которые имеют степень, отличную от первой" (с. 43).

Это попытка объяснить, почему хаотические решения возникают в нелинейных уравнениях. Попытка, более всего напоминающая объяснение происхождения слова смородина из слова Родина (на самом деле, оно родственно слову смердеть и означало "пахучая ягода"). Не знаешь даже, с чего начать перечислять нелепости в этом пассаже. Динамический хаос, который имеет здесь в виду Лесков, — это не "свободная игра факторов", а удивительное, но реальное свойство отдельных систем быть неустойчивыми по отношению к малым возмущениям, но при этом оставаться в некоторой ограниченной области параметров. В результате, предсказание движения системы оказывается возможным только на ограниченное время вперед. При этом система остается принципиально детерминистской. Малые возмущения как причину непредсказуемости доктор путает здесь с нелинейностью как причиной чувствительности системы к этим возмущениям. Между тем чувствительность к малым возмущениям и хаотические решения существуют и у линейных систем.

Простейший пример нелинейности — растяжение пружинки. Если к пружинке подвесить небольшой груз, ее растяжение будет пропорционально весу груза. Эта пропорциональность и другие подобные ей и называются «линейностью». По мере увеличения груза мы дойдем до предела растяжимости пружины; сначала она перестанет удлиняться, а потом и вовсе порвется. Это — нелинейная стадия. Более сложный пример нелинейности дают волны на воде. Когда возвышение поверхности невелико, вдвое более высокая волна ведет себя совершенно так же, как и вдвое более низкая. Это — линейность. По мере увеличения амплитуды (возвышения) волны ее гребень начинает заостряться, а затем волна опрокидывается. Это уже нелинейный эффект.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже