Как выяснилось, пользуясь подобным способом, можно вручную обеспечивать стабилизацию космического корабля в заданном положении с точностью, достаточной для астрономических наблюдений.
Наряду с этими сравнительно простыми средствами ориентирования и навигации на космических кораблях применяются и более сложные автоматические устройства. Ввиду важности обеспечения точной заданной ориентации корабля в соответствии с программой полёта эти системы не столько дублируют, сколько дополняют друг друга. К числу таких комплексных систем принадлежит астроинерциальная система навигации космического корабля, включающая в себя гиростабилизированную платформу, систему астрокоррекции и вычислительное устройство, снабжённое оптическим визиром, направленным на заданное светило. В электронной памяти вычислительной машины имеется несколько десятков навигационных звёзд.
Но и здесь со стороны космонавта необходим контроль за действием системы. В качестве основных ориентиров берутся обычно наиболее яркие звёзды: Сириус, Канопус, Вега. Но разница в их блеске незначительна. И если создавались устройства на автоматических межпланетных станциях, способные, например, отличить блеск Канопуса от блеска Сириуса и Веги, то с течением времени, когда ослабевала чувствительность светопринимающих элементов, точность такого наведения резко снижалась. Автомат с одинаковым успехом мог удерживать станцию ориентированной на любую яркую звезду. Поэтому в новых системах предусматривается различать не только блеск, но и спектральные характеристики звезды. Однако ошибки не исключены и в этом случае, так как все наиболее яркие звёзды (за исключением Бетельгейзе, Альдебарана, Антареса, Капеллы и Арктура) принадлежат к числу голубовато-белых. Очевидно, в основе наиболее надёжных методов опознавания «опорных» звёзд должно лежать их взаимное расположение на небе. Для этой цели можно использовать не одну, а несколько следящих систем, как было, например, осуществлено на одной из орбитальных астрономических обсерваторий. Можно сочетать оба метода вместе, но это потребует громоздких систем, надёжность которых обратно пропорциональна их сложности. Поэтому важное место в космической навигации принадлежит, безусловно, человеку-оператору.
Глава VI СРЕДИ ГОР И КРАТЕРОВ
Луна — настоящее и будущее
Среди множества космических объектов Вселенной ближайшим к Земле является естественный спутник нашей планеты — Луна.
В последние годы учёные проявляют к исследованию этого небесного тела особый интерес. И этот интерес не случаен. Прежде всего он определяется тем обстоятельством, что Луна — сходное с Землей по своей природе космическое тело. Судя по всему, и Земля и Луна возникли в едином процессе формирования Солнечной системы и прошли во многом аналогичные стадии развития. Поэтому, изучая Луну и сравнивая её с Землей, мы можем добыть такие данные о нашей собственной планете, получить которые было бы весьма затруднительно или даже в обозримом будущем практически невозможно, если бы мы изучали её обособленно, в единственном экземпляре. Исследование Луны даст возможность применить для изучения Земли «принцип сравнения», играющий чрезвычайно важную роль в астрономии: если мы хотим познать какой-либо космический объект, мы должны исследовать сходные с ним объекты, находящиеся на иных стадиях своего развития, и сравнить их между собой.
Луна не только заманчивый, но и сравнительно весьма удобный объект научного исследования. Это небесное тело расположено намного ближе к Земле, чем любое другое. Достаточно напомнить, что соседние с Землей планеты Венера и Марс даже в моменты наибольшего сближения удалены от нас соответственно на 39 и 56 миллионов
Благодаря своей близости Луна стала первым небесным телом, которого достигли космические аппараты, в том числе и с человеком на борту. Она также стала своеобразным полигоном для отработки космической техники.
Весьма вероятно, что в будущем именно Луна станет первым естественным космическим объектом, который человек начнёт непосредственно осваивать...
Луна — стартовая площадка для межпланетных кораблей. Луна — космическая обсерватория. Луна — идеальная лаборатория для проведения уникальных физических, химических, биологических исследований... Наконец, Луна — источник ценного сырья и заманчивая база для развития различных отраслей космического производства и осуществления ряда технологических процессов, для которых необходимы пониженная сила тяжести и космический вакуум.
На эти темы написано множество научно-фантастических произведений. Однако наша эпоха — это эпоха реализации многих идей, ещё недавно представлявшихся чисто фантастическими. В какой мере значительные успехи, достигнутые в последние годы в изучении Луны с помощью космических аппаратов различных типов, делают реальными перспективы её освоения человеком?