Продолжаем увеличивать шаг решетки. На графике мы видим, что правее точки пересечения график «с водой» оказывается не выше, а
При любом шаге решетки, который лежит правее точки пересечения кривых, коэффициент размножения «с водой» оказывается меньше, чем «без воды» –
Та роль, которую в реакторе исполняет вода, зависит от того, сколько в реакторе основного замедлителя – графита. Мало графита – вода работает как замедлитель, много графита – вода работает как поглотитель.
При значениях шага, лежащих левее этой точки, т. е. там, где мало графита, вскипание воды приводит к уменьшению реактивности и мощности; правее – к увеличению и того, и другого.
* * *
Теперь попробуем разобраться, как это обстоятельство влияет на
Выберем на горизонтальной оси одно определенное значение размера графитового блока – например, такое, какое оно есть в реакторе РБМК, т. е. равное 25 см, и сравним два значения коэффициента размножения, соответствующих выбранному значения шага.
На верхней кривой значению шага 25 см соответствует значение коэффициента размножения, равное 1.09, на нижней кривой – 1.045. Верхняя кривая соответствует состоянию реактора «без воды», нижняя – состоянию «с водой». Это два значения коэффициента размножения, которые соответствуют двум крайним состояниям
Разница между эти двумя крайними значениями в нашем случае 1.09 – 1.045 = 0.045.
Содержательный физический смысл этой разницы – отклик коэффициента размножения на изменение количества воды в объеме реактора. Если исходным состоянием реактора считать состояние с водой, то переход к состоянию «без воды» будет сопровождаться увеличением коэффициента размножения и, как следствие, – увеличением мощности.
Повторим еще раз цепочку разгона, описанную выше. Любое сколь угодно малое увеличение паросодержания – или, что то же самое, любое уменьшение количества воды, – приводит к увеличению коэффициента размножения, к увеличению нейтронного потока и к увеличению тепловой мощности; увеличение тепловой мощности дополнительно увеличивает паросодержание, паросодержание увеличивает коэффициент размножения – и так далее. Запускается механизм
И точно также реактор ведет себя при случайном уменьшении паросодержания – коэффициент размножения и следом за ним тепловая мощность начинают падать, пока это падение опять-таки не остановит система регулирования.
Так реактор РБМК-1000 в своем первозданном виде и работал: его мощность болтало от одной уставки[15]
до другой, автоматический регулятор срабатывал ежеминутно, а СИУР – старший инженер управления реактором – был весь в мыле.Вспоминает Михаил Карраск, участник пуска 1-го энергоблока Ленинградской АЭС – самого первого энергоблока с реакторами РБМК:
«После того как прошли пусковые операции первого блока, мы столкнулись со сложной физикой реактора. … Реактор был нестабильный. Как-то в мою смену раздался звонок. На блочный щит зашли директор ЛАЭС Валентин Павлович Муравьев вместе с Ефимом Павловичем Славским – легендарным министром Средмаша. Мы поприветствовали друг друга, обменялись рукопожатиями, я представился и продолжил работу.
Муравьев и Славский наблюдали за моей работой молча. Я, сидя за пультом, чувствовал себя пианистом – пальцы так и бегали по кнопкам. Славский говорит: „Валентин Павлович, ситуация какая-то интересная. Старший инженер – сам по себе, автоматический регулятор – сам по себе. Что за машину мы создали?!“ „Да, надо принимать меры“, – ответил ему директор.
Надо сказать, что все это понимали. Ведь нам приходилось работать вместе с автоматом. Каждые 20–30 секунд приходилось вмешиваться в работу реактора…»[16]
.4. Что произошло на 4-м энергоблоке