Читаем Вальсируя с медведями полностью

Как бы вы это ни сделали, фигура из выбранных точек должна, в конечном счете, повторять изначальную диаграмму неопределенности. Чтобы проверить себя, вы можете собрать свои результаты за некоторый период времени, рассортированные по удобным группам, и использовать их для построения гистограммы своих выбранных результатов. Если вы правильно рассчитали процесс выборки, последовательные гистограммы (для все большего и большего числа элементов выборки) могли бы выглядеть так:



В итоге, когда вы наберете пару сотен точек, огибающая вашей гистограммы будет очень похожа на диаграмму неопределенности, с которой вы начали:


Эффект Монте-Карло

Выборка Монте-Карло – это подход, гарантирующий соблюдение формы наблюдаемой кривой во времени. Механизм выбора Монте-Карло использует данные прошлых наблюдений в форме кумулятивной диаграммы неопределенности вместе с простым генератором случайных чисел для отбора. Если выбрать достаточное количество данных, гистограмма этой выборки начнет аппроксимировать фигуру ваших наблюдаемых данных. Генератор настроен на выдачу случайных чисел между 0 и 1. Вся штука в том, чтобы использовать сгенерированное число для выбора значения на вертикальной оси диаграммы неопределенности и проведения через него горизонтальной линии. Если, например, первое сгенерированное число было 0,312, вы рисуете горизонтальную линию, проходящую через точку 0,312 на вертикальной оси (см. верхний рисунок на следующей странице).

Затем вы проводите вертикальную линию через точку, где ваша горизонталь пересекает кривую. Соответствующая величина на горизонтальной оси – это ваша первая точка выборки (см. нижний рисунок на следующей странице).

Второй рисунок говорит о том, что для первого выборочного забега вокруг площадки можно ожидать скорость 7,66 миль/час. Теперь повторим это, взяв больше случайных чисел, каждое из которых дает выборочное значение скорости. Если достаточно долго продолжать этот процесс и построить из результатов гистограмму, то огибающая гистограммы начнет аппроксимировать диаграмму неопределенности, с которой вы начали (ее дифференциальный вид).



Моделирование забега с двумя неопределенностями

Механизм выборки, построенный на таком простом правиле, можно теперь применить к проблеме бега. Нам понадобится два таких механизма: один для получения данных с диаграммы скорости и другой для получения данных с диаграммы расстояния:



Этот подход позволяет обходиться арифметическими действиями с выборками, вместо интегрального исчисления по кривым. В первый раз, когда вы запускаете этот процесс, он говорит вам, что вы пробежите, скажем, за 33 минуты. Этот результат не так уж и значим – это просто рассчитанное время для случайно выбранных величин из диапазона разброса скорости и расстояния. Но повторение этого процесса снова и снова даст распределение результатов, которые начинают аппроксимировать неопределенности ожидаемого времени забега.

Диаграмма, показанная выше, – это симулятор Монте-Карло для проблемы двойной неопределенности. Он позволяет вам моделировать n случаев проблемы и отображать результаты в форме результирующей диаграммы неопределенности. Вот результат для 100 образцов:



Метод, использованный здесь, не ограничен двумя неопределенностями. Его можно использовать для всего портфеля рисков, грозящих проекту по созданию программного обеспечения.

Модель риска для проектов программного обеспечения

«RISKOLOGY» – это симулятор Монте-Карло, созданный для менеджера, занимающегося рисками в проекте по разработке программного обеспечения. Это – прямое воплощение механизма выборки по методу Монте-Карло, выраженное в терминах логики электронных таблиц. Мы написали эту программу в Excel, поэтому вам понадобится лицензионная копия программы, чтобы использовать этот инструмент. «RISKOLOGY» идет в комплекте с нашими собственными данными о некоторых рисках, с которыми может столкнуться ваш проект. Вы можете использовать наши данные или заменить их собственными.

Скачайте копию симулятора «RISKOLOGY» с нашего сайта:http://www.pmo.ru/riskology

Там же можно найти некоторые шаблоны и инструкции по использованию и подгонке симулятора.

Побочный эффект использования симуляции

Как только вы смоделировали достаточное количество примеров для своего проекта, симулятор обеспечит вам достаточно гладкую результирующую кривую. Эта кривая может показывать совокупные риски, связанные со сроком сдачи вашего проекта или с набором функциональных качеств, которые могут быть готовы к заданному сроку. В терминах управления рисками, результат представляется как диаграмма совокупного риска.

Для незнакомых с управлением рисками, или тех, кому очень сложно понять неопределенность, мы предлагаем воспринимать это как результат моделирования: «Мы прогнали этот проект 500 раз через симулятор, и получили результат, показанный на рисунке».



Перейти на страницу:

Похожие книги

От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...
От хорошего к великому. Почему одни компании совершают прорыв, а другие нет...

Как превратить среднюю (читай – хорошую) компанию в великую?На этот вопрос отвечает бестселлер «От хорошего к великому». В нем Джим Коллинз пишет о результатах своего шестилетнего исследования, в котором компании, совершившие прорыв, сравнивались с теми, кому это не удалось. У всех великих компаний обнаружились схожие элементы успеха, а именно: дисциплинированные люди, дисциплинированное мышление, дисциплинированные действия и эффект маховика.Благодаря этому компании добивались феноменальных результатов, превосходящих средние результаты по отрасли в несколько раз.Книга будет интересна собственникам бизнеса, директорам компаний, директорам по развитию, консультантам и студентам, обучающимся по специальности «менеджмент».

Джим Коллинз

Деловая литература / Личные финансы / Финансы и бизнес
Лягушка, слон и брокколи. Как жить и как не надо
Лягушка, слон и брокколи. Как жить и как не надо

Для правильных решений надо освоить три метода: как съесть слона, как сожрать лягушку и когда следует есть брокколи. Про слона и лягушку вы наверняка слышали: слона надо есть медленно и по кусочкам, а лягушку – глотать первым делом, с утра. Идея с брокколи не так известна, но концепция такая: брокколи полезна для долголетия. Но для того, чтобы дольше жить, мало это знать. Надо её ещё и регулярно есть.Почему сила воли работает плохо и зачем избегать тупости? Какие дела стоит сделать прямо сейчас, а какие лучше выкинуть из жизни? Чем привычки лучше целей? Как сделать что-то новое и интересное, не бросив все в самом начале? Как научиться чему угодно и войти в число лучших? Что такое осознанная практика и почему 10 тысяч часов может не хватить?Алексей Марков, кандидат экономических наук, автор знаменитой «Хулиномики», рок-звезда и отец четверых детей учит людей думать в своей привычной манере: точно, жёстко, с циничными шутками и очень лёгким языком.

Алексей Викторович Марков

Деловая литература / Самосовершенствование / Прочая научная литература / Эзотерика / Образование и наука
История ИП. История взлетов и падений одного российского индивидуального предпринимателя
История ИП. История взлетов и падений одного российского индивидуального предпринимателя

Изначально эта книга называлась «Из грязи в князи и назад, и так много раз подряд». За 12 предпринимательских лет, прежде чем вывести на федеральный уровень архитектурно-брендинговую компанию DeVision, основать главный форум для застройщиков СНГ и вместе с партнерами создать девелоперскую компанию в Тюмени, я познал много падений – провел убыточное федеральное мероприятие в Москве, открыл и закрыл несколько ресторанов, многократно банкротился, пережил увольнение, пятисекундную остановку сердца и серьезную драму в личной жизни. Если вы – начинающий предприниматель, эта книга станет спасательным кругом, когда вам будет казаться, что уже ничего нельзя исправить. Но если вы в бизнесе много лет, у вас не раз возникнет чувство, будто вы перечитываете свой дневник. В этой книге я рассказал все, что знаю о бизнесе, не утаив ничего. Хочется, чтобы после прочтения последней страницы ваша жизнь стала лучше.

Илья Андреевич Пискулин , Илья Пискулин

Деловая литература / Управление, подбор персонала / Финансы и бизнес