Однако ядра дейтерия и трития не вступают в реакцию синтеза сами по себе, так как при сближении этих ядер начинают действовать электрические силы отталкивания. Преодолеть такой энергетический барьер можно только одним способом — разогнать ядра до достаточно больших скоростей. Наиболее естественный и, пожалуй, единственно возможный в физике путь осуществить условие, позволяющее не отдельным, а многим ядрам вступать в реакцию синтеза, — получить нагретый до очень высоких температур (не менее 100 млн. °С) газ, состоящий из ядер дейтерия и трития. Получение такой плазмы и лежит в основе управляемого термоядерного синтеза.
Один из возможных путей решения этой задачи состоит в сферически-симметричном облучении твердых шариков из дейтериево-тритиевого льда короткими (примерно в одну миллиардную долю секунды) и мощными импульсами лазерного излучения. Образовавшийся в результате этого сгусток термоядерной плазмы успевает за ничтожное время своего существования сгореть в «термоядерном огне». Такой импульсный процесс по сути своей — термоядерный микровзрыв. Он и составляет основу лазерного направления в проблеме управляемого синтеза — так называемый лазерный термоядерный синтез, предложенный в Физическом институте имени П. Н. Лебедева Академии наук СССР в 1963 году.
Нетрудно понять физический принцип использования лазеров для получения термоядерных микровзрывов. Наглядная сторона вопроса заключается в возможности фокусировать лазерный световой импульс на площадку очень малых размеров — порядка 100 мкм и меньше, что, в свою очередь, означает возможность вложить всю лазерную анергию в небольшие объемы вещества.
Высокая мощность лазеров обеспечивает мгновенный нагрев и сжатие малых порций термоядерного вещества. Этим и создаются условия для термоядерного микровзрыва. Возникающее под действием лазерного излучения давление в образующемся сгустке термоядерной плазмы достигает 10
Для эффективной термоядерной вспышки необходима, по современным представлениям, энергия лазера — 1-10 МДж при длительности лазерного импульса 1 не. Сама по себе названная величина энергии невелика и соответствует сгоранию 25-250 г. бензина. Однако такая энергия, сосредоточенная в узких лучах и выделяющаяся в течение столь короткого времени, оказывается способной дать человечеству свет и тепло на практически неограниченный срок.
В последние годы мы являемся свидетелями весьма бурного прогресса в решении проблемы лазерного термоядерного синтеза. В СССР, США, Франции, Японии и других странах введены в действие и строятся многоканальные лазерные комплексы с энергией излучения 10
Лазерные «машины» с энергией 10
Лазерный термоядерный реактор — это камера, стенки которой «собирают» энергию, полученную при микровзрыве, и преобразуют ее сначала в тепло, а затем в электричество. К сожалению, вряд ли кто возьмется сегодня назвать сроки практического использования результатов фундаментальных исследований. Однако существует весьма заманчивая возможность приблизить это время. Она связана с так называемыми гибридными реакторами, в которых одновременно используются реакции синтеза и деления.
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука