Но этим не ограничивается значение добротности. Вернемся к первому эксперименту, когда в контур был включен генератор и мы плавно изменяли его частоту. Теперь нам известно, что на определенной частоте, ну, скажем, на частоте 1000 кгц, наступит резонанс и напряжение на контуре резко возрастет. Но где же граница появления резонанса? Ведь частоту мы меняем плавно и прежде чем установить 1000 кгц должны пройти 900, 990 и даже 999. К тому же частота не обязательно должна выражаться целым числом — наш генератор будет давать переменные напряжения, которые только на тысячные доли герца будут отличаться от резонансной частоты. Так неужели же контур забракует все эти колебания и отзовется только на «полюбившиеся» 1000 кгц? Конечно, нет.
Точный выбор одной только частоты мог бы осуществить идеальный колебательный контур, в котором совершенно нет никаких потерь энергии. В реальном же случае по мере приближения к резонансной частоте напряжение нарастает постепенно и примерно так же медленно убывает, когда мы пройдем эту частоту. Для всякого контура можно нарисовать специальный график — резонансную кривую, которая покажет, насколько резко падает напряжение по мере удаления от резонансной частоты в ту и другую сторону. Форма этой кривой в огромной степени зависит от добротности контура — чем выше добротность, тем острее резонансная кривая, тем резче ослабляет контур переменные напряжения, частота которых близка к резонансной (рис. 27, г).
Общая идея использования колебательного контура для выделения сигнала одной единственной станции примерно ясна. Контур можно включить в цепь антенны, а его индуктивность и емкость подобрать с таким расчетом, чтобы резонанс получался как раз на нужной нам частоте. Это значит, что контур во много раз повысит напряжение принимаемой станции и после детектирования мы услышим ее намного громче других. Когда же мы захотим принять другую станцию, то просто изменим один из параметров контура, например, увеличим или уменьшим его емкость. При этом, как уже отмечалось, изменится частота собственных колебаний, а значит, и частота, на которой в контуре будет резонанс. Меняя емкость или индуктивность, мы сможем легко перестраиваться с одной станции на другую (рис. 28).
Рис. 28
Такова общая идея использования контура для выбора нужной станции, и именно она лежит в основе всех избирательных цепей радиоприемника. Но от общей идеи до практической схемы нужно еще пройти некоторый путь. Важный шаг на этом пути мы с вами сделаем в следующей главе.
Длинные, средние, короткие и УКВ
Ближайшая наша задача — познакомиться с реальными колебательными контурами, с их устройством, применяемыми деталями, схемами включения, с особенностями работы контуров на различных частотах. Но мы почти ничего еще не говорили о том, какие частоты применяются для радиовещания, как они распределяются между радиостанциями, каковы особенности распространения радиоволн различной длины. С этих вопросов мы и начнем.
Теперь уже ясно, что для эффективного излучения радиоволн нужны токи высокой частоты (стр. 49). Самая низкая из этих высоких частот, применяемых для радиовещания, — 150 кгц. Легко подсчитать, что при такой частоте передатчик излучает радиоволны длиной 2000 м. Самая высокая частота, используемая для радиовещания, — 73 Мгц соответствует длине волны 4,11 м. Но не нужно думать, что радиовещательные станции работают на всех частотах между этими двумя граничными. Им отводятся четыре строго ограниченных частотных участка — диапазоны длинных, средних, коротких и ультракоротких радиоволн (рис. 16, таблица). Границы этих диапазонов хоть и не очень точные, с некоторым запасом, вы можете найти на шкале настройки вашего радиоприемника.
Нужно заметить, что коротковолновый диапазон не полностью отдан симфоническим оркестрам и спортивным комментаторам. Радиовещательным станциям на коротких волнах предоставлено лишь несколько сравнительно небольших участков, которые находятся в районе волн длиной 25, 31, 42, 49, 75 метров. Эти участки так и называются «Участок 25 метров», «Участок 41 метр» и так далее.