Когда мы вводим отрицательную обратную связь в усилитель НЧ, то из анодной цепи на сетку попадает не только усиливаемый чистый сигнал, но и все посторонние гармоники, появившиеся в самой лампе в результате искажений. И вот здесь-то, попав на главный командный пост лампы, на управляющую сетку, появившиеся в результате искажений гармоники начинают сами себя ослаблять, действуя против своих «родителей» — посторонних гармонических составляющих анодного тока. Конечно, подобным способом нельзя полностью избавиться от искажений, но уменьшить их в несколько раз удается. Заметим, что наряду с определенными достоинствами отрицательная обратная связь имеет и серьезный недостаток, она одновременно ослабляет полезный сигнал. Однако бороться с этим недостатком довольно просто-нужно лишь повысить усиление предыдущего каскада и подавать напряжение на сетку с некоторым запасом.
На рис. 50 вы видите упрощенную по сравнению с предыдущей (не показаны цепи накала, вместо пентода в первом каскаде работает триод) схему усилителя НЧ, где жирными линиями показано несколько типичных цепей отрицательной обратной связи. Прежде всего (
Рис. 50
Анод лампы
С помощью конденсатора, сопротивление которого, как известно, зависит от частоты, удается сделать обратную связь неравномерной — усилить или, наоборот, ослабить ее в некоторой части звукового спектра и таким путем «поднять» или «завалить» определенный участок частотной характеристики.
Этот прием широко используется в усилителях НЧ и, в частности, в раздельном регуляторе тембра, работу которого поясняет рис. 51.
Рис. 51
В цепи обратной связи имеются два фильтра — один из них пропускает высшие звуковые частоты, другой — низшие. Уменьшая сопротивление
И, наконец, еще один незнакомый нам элемент усилителя НЧ — двухтактный выходной каскад. Когда от усилителя нужно получить большую мощность и одной лампы уже недостаточно, поступают довольно просто — берут две, включая их так, как показано на рис. 52. Это и есть двухтактный выходной каскад, который можно встретить почти во всех приемниках высокого класса.
Рис. 52
Возможен такой режим двухтактного каскада, когда лампы работают поочередно, подобно кенотронам в двухполупериодном выпрямителе. Правда, в двухполупериодном выпрямителе нагрузку включают так, чтобы получить в ней пульсирующий ток, то есть ток одного направления. В двухтактном каскаде задача совсем другая — лампы должны создать в нагрузке переменный ток, причем каждая из них обеспечивает какой-нибудь одни — положительный или отрицательный полупериод этого тока. Из каждой половинки обмотки энергия передается во вторичную, где выходные мощности обеих ламп суммируются в едином переменном токе низкой частоты.
Можно было бы, конечно, обойтись и без двухтактной схемы и просто включить лампы параллельно — анод соединить с анодом, катод — с катодом, сетку — с сеткой. При этом увеличился бы суммарный анодный ток, а значит, и входная мощность. Однако двухтактная схема имеет по сравнению с параллельным включением ламп, да и вообще по сравнению с любой однотактной схемой (рис. 49), ряд серьезных преимуществ.