Эти числа доводят до конца загадку энтропии, которую представляет нам современная космология. Если Больцман прав и энтропия характеризует число возможных микросостояний системы, неразличимых с макроскопической точки зрения, то очевидно, что ранняя Вселенная находилась в чрезвычайно необычном состоянии. Вспомните, что энтропия равна логарифму количества эквивалентных состояний, то есть состояние с энтропией
101088
различных состояний. Но это могло бы быть одно из
1010120
возможных состояний, доступных для Вселенной. И снова чудеса написания делают эти числа на первый взгляд очень похожими, хотя в действительности второе число невероятно, непостижимо огромное по сравнению с первым. Если состояние ранней Вселенной просто «случайным образом выбрано» среди всех возможных состояний, то его вероятность выглядеть именно так, каким мы его видим, на самом деле до нелепого мала.
Вывод из всего этого совершенно очевиден: состояние ранней Вселенной
Максимизация энтропии
Мы выяснили, что ранняя Вселенная пребывала в очень необычном состоянии, и полагаем, что это требует отдельного объяснения. Что насчет вопроса, с которого мы начали эту главу: как должна выглядеть Вселенная? Как выглядит состояние с максимальной энтропией, в котором когда-либо может оказаться наш сопутствующий объем?
Роджер Пенроуз считает, что ответом является черная дыра.
Вы видите, почему этот ответ напрашивается сам собой. Как мы узнали, в присутствии гравитации энтропия увеличивается, когда объекты сближаются, то есть когда состояние становится комковатым, а не сглаживается. Определенно, черная дыра – это объект с максимальной плотностью, настолько большой, насколько это только можно себе вообразить. Как уже говорилось в предыдущей главе, черная дыра заключает максимальную энтропию, которая может уместиться в области пространства – времени любого фиксированного размера; эта идея лежит в основе голографического принципа. И результирующая энтропия, несомненно, очень велика, – мы убедились в этом, когда рассматривали сверхмассивную черную дыру.
Однако если еще раз все как следует проанализировать, выясняется, что этот вывод не совсем верен.[249]
Черная дыра не максимизирует общую энтропию, которой может обладать система, – она максимизирует энтропию, которая может содержаться в области фиксированного размера. Точно так же, как второе начало термодинамики не говорит: «энтропия увеличивается, если не учитывать гравитацию», оно не говорит: «энтропия в пределах фиксированного объема увеличивается». Оно утверждает лишь, что «энтропия увеличивается», и если для этого требуется бо́льшая область пространства, значит, так тому и быть. Одно из чудес общей теории относительности, заключающее в себе критически важное отличие от абсолютного пространства – времени ньютоновской механики, состоит в том, что размеры никогда не бывают фиксированными. Даже не придя к окончательному пониманию энтропии, мы можем добраться до правильного ответа, следуя по стопам Пенроуза и просто изучая естественную эволюцию систем в направлении высокоэнтропийных состояний.Рассмотрим простой пример: материя скопилась в одной области Вселенной, пустой (даже без энергии вакуума) везде, кроме этой конкретной области. Другими словами, это пространство – время, которое практически везде абсолютно пусто и включает лишь несколько частиц материи, собравшихся в одном определенном месте. Поскольку в большей части пространства энергии нет вообще, Вселенная не может расширяться или сжиматься, так что за пределами области, где находится скопление материи, в действительности ничего не происходит. А частицы под воздействием собственной гравитационной силы приближаются друг к другу.