В 2004 году Хокинг совершил поступок, о котором кричали заголовки всех газет: он признал свое поражение, согласившись, что при испарении черной дыры информация действительно сохраняется. Интересно также, что Торн со своим поражением так и не согласился (по состоянию на момент написания этой книги); более того, Прескилл с большой неохотой принял свой выигрыш (энциклопедия
Что же убедило Хокинга, на протяжении тридцати лет утверждавшего, что информация в черных дырах теряется, в том, что в действительности она сохраняется? Ответ основывается на нескольких важных идеях, касающихся пространства—времени и энтропии, поэтому для начала нам необходимо познакомиться с основами.
Сколько состояний поместится в контейнер?
Мы неспроста пытаемся докопаться до самой сути черных дыр в книге, которая, по идее, должна быть посвящена стреле времени: стрела времени связана с увеличением энтропии, а главная причина этого увеличения кроется в низкой энтропии сразу после Большого взрыва — в тот период истории Вселенной, когда гравитация играла принципиально важную роль. Таким образом, нам необходимо знать, как энтропия ведет себя в присутствии гравитации, и неполное понимание квантовой гравитации сдерживает нас, не давая добраться до сути. Единственный намек, которым мы располагаем, — это формула Хокинга для энтропии черной дыры; попробуем воспользоваться этой подсказкой и посмотрим, куда это нас приведет. Действительно, попытки понять энтропию черной дыры и разобраться с парадоксом о потере информации в черных дырах существенно продвинули исследования пространства—времени и пространства состояний в квантовой гравитации.
Рассмотрим такую загадку: сколько энтропии может уместиться в контейнере? Больцману и его современникам этот вопрос показался бы глупым — ведь в коробку можно вместить столько энтропии, сколько душа пожелает. Если у нас есть контейнер, полный молекул газа, то состояние с максимальной энтропией (равновесная конфигурация) будет существовать для любого фиксированного числа молекул — газ будет равномерно распределен по контейнеру при постоянной температуре. При желании мы могли бы впихнуть в этот контейнер еще больше энтропии; все, что нам для этого потребовалось бы, — это добавить больше молекул. Если нас вдруг начнет волновать вопрос о том, что молекулы занимают определенный объем пространства и существует некое максимальное число молекул, которые могут поместиться в контейнер, то и эту проблему мы сможем без труда решить, взяв контейнер, полный фотонов (частиц света), а не молекул газа. Фотоны можно нагромождать друг на друга бесконечно, и мы сможем уместить в контейнере столько фотонов, сколько нам потребуется. С этой точки зрения ответ вроде бы таков, что в любой конкретный контейнер можно уместить бесконечный (или, по крайней мере, произвольно большой) объем энтропии.
В этой истории, однако, отсутствует критически важный ингредиент: гравитация. Мы вталкиваем в контейнер все больше вещества, и масса содержимого контейнера возрастает.[231]
В конце концов материю, которую мы засовываем в контейнер, ожидает та же судьба, что и массивную звезду, израсходовавшую свое ядерное топливо: она сколлапсирует под воздействием собственного гравитационного притяжения и превратится в черную дыру. Каждый раз, когда это происходит, энтропия увеличивается — энтропия черной дыры больше, чем энтропия материи, из которой она была сделана (в противном случае второй закон термодинамики не позволил бы черным дырам образовываться).В отличие от контейнеров с атомами создавать черные дыры одинакового размера, но с разными массами невозможно. Размер черной дыры характеризуется радиусом Шварцшильда, в точности пропорциональным ее массе.[232]
Если вам известна масса, то вы знаете размер; и наоборот, если у вас имеется контейнер фиксированного размера, то вы не сможете запихнуть в него черную дыру тяжелее определенной массы. Но если энтропия черной дыры пропорциональна площади ее горизонта событий, это означает, чтоЭто весьма примечательный факт. Он отражает разительное отличие, появляющееся в поведении энтропии, как только влияние гравитации становится существенным. В гипотетическом мире, в котором такой штуки, как гравитация, не существует, мы могли бы втиснуть сколько угодно энтропии в любую заданную область, но в реальном мире гравитация не позволяет нам это сделать.