В целом пространство может совершенно произвольным способом искривляться в разных точках, и для того чтобы справиться с математикой, описывающей искривление, была разработана особая дисциплина, носящая название дифференциальной геометрии. Но космологам повезло: пространство при рассмотрении очень больших расстояний является однородным и выглядит одинаково во всех направлениях. В такой ситуации достаточно указать одно значение — «пространственную кривизну», чтобы узнать все необходимое о геометрии трехмерного пространства. Кривизна пространства может выражаться положительным числом, отрицательным числом или быть равной нулю. Если кривизна равна нулю, то мы, естественно, говорим, что пространство «плоское» и обладает всеми геометрическими характеристиками в привычном для нас понимании. Эти характеристики впервые были сформулированы Эвклидом и включают такие свойства, как «параллельные линии никогда не пересекаются» и «сумма углов треугольника равна в точности 180 градусам». Если кривизна положительна, то пространство напоминает поверхность сферы, — за исключением того, что оно трехмерно. Линии, параллельные на каком-то участке, в конечном счете пересекутся, а сумма углов треугольника
Рис. 14.2.
Варианты пространств с постоянной кривизной. Сверху вниз: положительная кривизна, как на сфере; отрицательная кривизна, как на седле; нулевая кривизна, как на плоской поверхностиСогласно правилам общей теории относительности, если при рождении Вселенная была плоской, то она остается плоской. Если она появилась в искривленном состоянии, то кривизна постепенно, по мере расширения Вселенной, уменьшается. Однако, как мы уже знаем, плотность материи и излучения также уменьшается. (Пока позабудьте даже о том, что вы когда-либо слышали такой термин, как темная энергия, потому что она все ставит с ног на голову.) Написав уравнения, можно убедиться, что плотность материи или излучения уменьшается
Следовательно, если в ранней Вселенной присутствовал хоть сколько-нибудь заметный вклад кривизны, сегодня искривленность Вселенной должна быть очевидной. Плоская Вселенная подобна карандашу, поставленному на кончик грифеля: малейшее отклонение влево или вправо моментально приведет к падению карандаша. Схожим образом, любое мельчайшее отклонение от идеальной плоскостности в ранние годы должно с годами становиться все более и более заметным. Но наблюдения показывают, что Вселенная выглядит очень плоской. Насколько можно судить, никакой поддающейся измерению кривизны в современной Вселенной не наблюдается.[265]
Такое состояние дел известно под названием
Проблема плоскостности имеет определенное сходство с проблемой энтропии, которую мы разбирали в предыдущей главе. В обоих случаях загвоздка не в ужасающем несоответствии между теорией и наблюдением — нам достаточно постулировать, что ранняя Вселенная пребывала в какой-то определенной форме, и тогда головоломка прекрасно складывается. Проблема в том, что «определенная форма» создает впечатление формы неестественной и принудительно тонко подстроенной, причем без всяких очевидных на то причин. Конечно, мы могли бы сказать, что и энтропия и пространственная кривизна ранней Вселенной были малы, и на этом закончить историю безо всяких дополнительных объяснений. Но эти очевидно неестественные свойства Вселенной могут быть ключом к чему-то важному, поэтому надлежит относиться к ним со всей серьезностью.
Магнитные монополи
Когда Алан Гут наткнулся на идею инфляции, он не пытался решить проблему плоскостности. Его интересовала совершенно другая загадка, известная под названием