В данной версии Мультиленной мы встретим как изолированные больцмановские мозги, притаившиеся в пустых деситтеровских областях, так и обычных наблюдателей, обнаруживаемых в шлейфах низкоэнтропийного начала новорожденных Вселенных. При этом представителей обоего типа должно быть бесконечно много. Но какая бесконечность выигрывает? Типы флуктуаций, создающих причудливых наблюдателей на равновесном фоне, определенно редки, но и другие, результатом которых становятся новорожденные Вселенные, также далеко не часты. В конечном итоге нас перестанет удовлетворять рассмотрение смешных картинок со Вселенными, разветвляющимися в обоих направлениях во времени; мы хотим понять вещи на количественном уровне настолько, насколько это возможно, для того чтобы делать надежные предсказания. Тем не менее приходится признать, что состояние дел пока не настолько хорошее. И все же вполне вероятно, что намного больше наблюдателей появляется по мере того, как новорожденные Вселенные растут и охлаждаются, стремясь к равновесию, чем из случайных флуктуаций в пустом пространстве.
Собирая все вместе
Работает ли это? Предлагает ли сценарий Мультиленной с новорожденными Вселенными удовлетворительное объяснение стрелы времени?
Мы рассмотрели много возможных подходов к проблеме стрелы времени: пространство состояний, которое меняется с течением времени, необратимые по своей природе динамические законы, особое граничное условие, симметричная расширяющаяся и сжимающаяся Вселенная, отскакивающая Вселенная с глобальной симметрией обращения времени и без нее, неограниченная Мультиленная и, конечно же, сценарий Больцмана—Лукреция с флуктуациями вокруг вечного равновесного состояния. Вселенная Голда, в которой происходит повторное сжатие, кажется довольно маловероятным вариантом на эмпирических основаниях, так как скорость расширения Вселенной все время увеличивается. А Вселенную Больцмана—Лукреция позволяют вычеркнуть из списка результаты наблюдений, поскольку Большой взрыв обладал намного меньшей энтропией, чем допускается условиями этой теории. Однако прочие возможности еще не сняты с обсуждения; каждая из них предоставляет более или менее удовлетворительный ответ, но ни в одной мы не можем быть уверены настолько, чтобы со спокойной совестью отбросить остальные. Не говоря уже о вполне реальной возможности того, что истинно верную теорию еще никто не придумал.
Трудно сказать, сыграют ли в конечном итоге какую-либо роль в понимании стрелы времени новорожденные Вселенные и Мультивселенная. Начнем с того, что я приложил усилия (возможно, даже чрезмерные), для того чтобы подчеркнуть, что многие шаги на этом пути были, мягко говоря, дерзновенно спекулятивными. Мы еще не достигли того уровня понимания квантовой гравитации, при котором могли бы уверенно заявлять, что в пространстве де Ситтера на самом деле происходят флуктуации, создающие новорожденные Вселенные; существуют аргументы как «за», так и «против». Также мы еще не пришли к окончательному пониманию роли энергии вакуума. Мы в своих рассуждениях отталкивались от мнения, что космологическая постоянная, которую мы наблюдаем в нашей Вселенной сегодня, действительно представляет минимально возможную энергию вакуума, но мы не располагаем обширной базой твердых доказательств этого предположения. Например, в контексте ландшафта теории струн достаточно легко получить состояния с правильным значением энергии вакуума, но точно так же легко получить любые другие виды состояний, включая состояния с отрицательной энергией вакуума или точно равной нулю. Более универсальная теория квантовой гравитации и Мультиленной описывала бы, как все эти возможные состояния соответствуют друг другу, включая переходы между разным числом макроскопических измерений, а также между разными значениями энергии вакуума. К тому же стоит упомянуть, что мы в действительности не относились к квантовой механике со всей серьезностью — мы кивали в сторону квантовых флуктуаций, но рисовали картины того, что по сути является классическими пространствами—временами. Правильный ответ, каким бы он ни оказался, с большой вероятностью будет сформулирован в терминах волновых функций, уравнения Шрёдингера и гильбертовых пространств.