Читаем Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии полностью

Таким образом, и теплота, и работа — это энергия в передаче, в переходе.Если процесса перехода нет — нет ни теплоты, ни работы. Они существуют только в процессе передачи от одного тела к другому,но не могут «содержаться» в них. То, что теплота переходит от одного тела к другому, вовсе не означает, что она сначала содержаласьв одном, а потом стала содержатьсяв другом теле. Просто внутренняя энергия тела, к которому была подведена теплота, выросла, а того, от которого теплота была отведена, соответственно снизилась. Превращение работы в теплоту означает, следовательно, что система, получившая энергию в форме работы от какого-либо тела, превращает его сначала во внутреннюю энергию, а затем отдает ее другому телу в форме теплоты. Так, затрачивая механическую работу на вращение мешалки, погруженной в жидкость, мы увеличиваем внутреннюю энергию этой жидкости: она нагревается, так как получает энергию в форме работы.Затем, давая жидкости охладиться до прежней температуры, мы можем отвести эту энергию в форме теплоты.

Примерно таким образом граф Румфорд в 1799 г. проводил свой знаменитый опыт, показывающий превращение работы в теплоту при сверлении пушек. Энергия, подводимая в форме механической работы вращения сверла, отводилась водой, которая при этом нагревалась от температуры Т 1до температуры Т 22> Т 1). Внутренняя энергия воды (обозначим ее U) возрастала при этом от U 1до U 2. Затем вода остывала снова до температуры Т 1, отдавая энергию в форме теплоты Q окружающей среде. Если охладить воду до прежней температуры, то ее внутренняя энергия остается такой же, как и вначале; количества теплоты Q и работы L будут равны. Если же охладить воду до какой-либо промежуточной температуры Т 3, более высокой, чем Т 1, то количество отводимой теплоты будет меньше, так как часть подведенной энергии остается в виде прироста U внутренней энергии воды.

Таким образом, закон сохранения энергии будет выражаться классической формулой, связывающей теплоту и работу:

L = Q + U. (2.1)

Затраченная работа может как идти на увеличение внутренней энергии тела U, так и отводиться в виде теплоты Q. Если U = 0, то Q = L. Формула (2.1) и выражала закон сохранения энергии в его наиболее простой форме. Возникла и наука, которая специально рассматривала взаимные превращения теплоты и работы, — термодинамика.

Термодинамика в начале своего развития рассматривалась только как наука о взаимных превращениях теплоты и работы [28]. По мере дальнейшего развития, она постепенно охватывала и другие энергетические превращения, связанные с электрическими, магнитными, химическими, а также квантовыми явлениями. Соответственно расширялись и понятия работы Lи внутренней энергии U. Таким образом, сфера действия первого закона термодинамики охватила по существу все области энергетических превращений и стала соответствовать по своему содержанию закону сохранения энергии.

Поэтому в дальнейшем мы будем использовать термин «первый закон термодинамики» как синоним термина «закон сохранения энергии». Так будет удобнее в дальнейшем при рассмотрении второго закона термодинамики и сопоставлении его с первым.

Изложим коротко некоторые формулировки и положения, связанные с первым законом термодинамики, которые понадобятся в дальнейшем при анализе новых ppm.

Существует целый ряд одинаково правильных формулировок первого закона термодинамики. Нам важно выбрать из них такую, которая в наибольшей степени была бы удобна для разоблачения ppm-1. С этой точки зрения, казалось бы, наиболее подходит самая близкая к нашей теме: «Вечный двигатель первого рода невозможен». Однако при всей четкости и категоричности такой формулировки она не говорит о том, как определить, что то или иное устройство именно и есть вечный двигатель. Ведь прежде, чем запретить, нужно знать что запретить!

Рис. 2.5. Энергетический баланс системы: а — реальный двигатель; б — ppm-1
Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже