Дня обеспечения дыхания экипажа изобретатель применил селитру, которая при нагревании выделяла кислород. Оценить талант (если не гениальность) Дреббеля можно, если учесть, что кислород был открыт шведским химиком К. Шееле в 1768-1773 гг., т. е. только через полвека. Дреббель, несомненно, был отличным химиком. Об этом свидетельствуют не только разработка им химической системы жизнеобеспечения, но и другие изобретения — детонаторы для мин из гремучей ртути Hg(ONC)2, технологии получения серной кислоты действием азотной кислоты на серу (это отметил Д.И. Менделеев в «Основах химии»), использования солей олова для закрепления цвета при окраске тканей кошенилью. Если ко всему перечисленному выше добавить, что Дреббель был специалистом по оптическим приборам, линзы для которых он шлифовал на изобретенном им самим станке, то этого будет вполне достаточно, чтобы оценить его заслуги.
Дреббель занимался и вечным двигателем. Однако такой человек, как он, не мог пойти стандартным путем, очередной раз изобретая колеса с грузами или водяные мельницы с насосами. Ему было совершенно ясно, что таким путем вечный двигатель не создать.
В 1607 г. он продемонстрировал Иакову I «вечные» часы (запатентованные им еще в 1598 г.), приводимые в движение, естественно, столь же «вечным» двигателем. Однако в отличие от многочисленных других устройств с таким же названием, он действительно в определенном смысле был «вечным». После показа королю часы были выставлены во дворце Этлхем на обозрение всем желающим и вызвали сенсацию среди лондонцев.
В чем же был секрет этих часов (вернее, их двигателя)? Вечные часы Дреббеля работали от привода, использующего, как и любой другой реальный двигатель, единственный возможный источник работы — неравновесности (разности потенциалов) во внешней среде. Мы уже говорили о них — разностях давлений, температур, химических составов и других, заторможенных и незаторможенных, на которых основана вся энергетика.
Но неравновесности, которые использовал Дреббель, — особого рода, отличные от тех, о которых говорилось в гл. 3, хотя они и связаны тоже с разностями температур и давлений. Они могут действовать в совершенно равновесной окружающей среде, во всех точках которой совершенно одинаковые температура и давление. В чем же тут дело и откуда тогда берется работа?
Секрет в том, что разности потенциалов (давлений и температур) здесь все же существуют, но они проявляются не в пространстве, а
Простейший способ использования колебаний параметров равновесной окружающей среды — поместить в нее барометр или термометр с подвижными элементами и заставить их работать — делать что-нибудь полезное. Именно так и поступил Дреббель. В его часах находился жидкостной «термоскоп», в котором уровень жидкости поднимался или опускался при изменении температуры и давления. Соединить поплавок на поверхности жидкости с приводом часов было уже делом механики, которой изобретатель владел в совершенстве.
Дреббель объяснял работу своего двигателя действием «солнечного огня». Это было не только в духе времени, но и совершенно правильно с современных позиций. Действительно, все изменения температуры и давления атмосферы определяются в конечном счете солнечным излучением.
Чертеж атмосферного двигателя Дреббеля до нас не дошел. Однако его идея вечного привода повторялась в разных модификациях и многократно использовалась другими изобретателями. По описаниям их приборов можно в определенной степени судить о том, каким мог быть двигатель Дреббеля.
Около 1770 г. англичанин Кокс предложил баромерический двигатель. На рис. 5.11 приведена его принципиальная схема. Сосуд, заполненный ртутью, привешен на тросах, соединенных с ободом колеса. Сосуд уравновешивался грузом, установленным на стержне, жестко связанном с колесом. В сосуд погружена барометрическая трубка, закрепленная в верхней части. При изменениях атмосферного давления высота столба ртути в трубке менялась; соответственно часть ртути либо выливалась из трубки в сосуд (падение давления), либо вталкивалась в нее из сосуда (повышение давления).