Установление общности и количественной эквивалентности различных форм движения, а затем точное формулирование на этой основе первого закона термодинамики было необходимо, но недостаточно. Нужно было установить
Впервые правильно поставил и решил эту задачу С. Карно, о котором мы уже писали в связи с первой формулировкой закона сохранения энергии. Со знаменитой книги Карно «О движущей силе огня…» начинается не только история термодинамики, но и вся современная теоретическая теплоэнергетика[46]
.По теории теплорода работа паровой машины выглядела очень просто. Теплород от дымовых газов, полученных при сжигании топлива, переходил к воде при высокой температуре, превращая ее в пар. Пар расширялся в цилиндре, производя работу. Затем пар направлялся в конденсатор, где при низкой температуре отдавал теплород охлаждающей воде.
Схема такой машины показана на рис. 3.1,
У современного читателя, однако, может возникнуть естественный вопрос. Пусть инженеры того времени и не знали закона сохранения энергии, но ведь он все равно действовал! А это означает, что количество отдаваемого внизу при T2
теплорода (т. е. теплоты) должно было быть существенно меньше, чем то, которое поступило наверху при T1, на количество произведенной работы, т. е. Q2 = Q1 — L.Как же не заметили этого? Ответ очень прост. Самые лучшие паровые машины того времени имели очень малую эффективность: они превращали в работу не более 3-5% получаемой теплоты. А это означает, что Q2
отличалось от Q1 так, как 95 отличается от 100; но точность тепловых измерений в то время была намного меньше 5%. Поэтому разницу между Q1 и Q2 просто не могли заметить (тем более что никому не приходило в голову, что ее нужно искать).С. Карно поставил перед собой задачу определить количественно «движущую силу огня», т. е., говоря современным языком, то максимальное количество работы, которое может дать единица количества теплоты.
Несмотря на то, что С. Карно исходил в этой работе еще из теории теплорода, а закон сохранения движущей силы (т. е. энергии)[47]
он сформулировал позже — между 1824 и 1832 гг. — он блестяще решил задачу.