Современный раздел классической динамики — теория динамических систем — возник, чтобы решить проблему описания негладких изменений. Специалисты по теории динамических систем разработали математические модели поведения сложных систем не только потому, что эти модели представляют самостоятельный, чисто теоретический интерес, но и имея в виду возможные приложения к сложным системам в реальном мире. Модели (представляющие собой обыкновенные дифференциальные уравнения, уравнения в частных производных эволюционного типа и конечно-разностные уравнения, как отдельные, так и их системы) воспроизводят динамические аспекты поведения сложных систем. Разработка имитационных моделей не ограничивается областью их реального применения: специалисты по теории динамических систем исследуют всевозможные модели в рамках возможностей используемого математического аппарата и затем ищут те классы эмпирических систем, к которым могут быть применены построенные модели. Такой гипотетико-дедуктивный подход порождает множество разнообразных моделей, позволяет воспроизводить множество режимов и сулит существенно расширить наше понимание разрывных преобразований в поведении множества различных сложных систем.
На языке теории динамических систем можно утверждать, что статические, периодические и хаотические аттракторы управляют долговременным поведением сложных систем. Статический аттрактор «захватывает», словно в ловушку, траекторию состояний системы — ее временной ряд, в результате чего система переходит в состояние покоя, причем состояние устойчивое. Периодический аттрактор захватывает траекторию в цикле состояний, повторяющихся за данный интервал времени; в этом случае система переходит в колебательное, или осцилляторное, состояние. Наконец, хаотический аттрактор порождает квазислучайную, хаотическую последовательность состояний; система не переходит ни в состояние покоя, ни в колебательный режим, а продолжает вести себя хаотично, но отнюдь не беспорядочно.
В последние годы хаотическое поведение было обнаружено у многих самых различных систем. Такое поведение обнаруживают столь различные процессы, как течение жидкостей и перемешивание веществ при отвердевании. Явление турбулентности также может служить примером хаотического поведения: оно было известно с XIX века, но причины его так и не были до конца поняты. К 1923 году гидродинамические эксперименты продемонстрировали возникновение круговых вихрей Тейлора; эти вихри возникают, когда скорость перемешивания в жидкости превышает некоторое критическое значение. Дальнейшее увеличение скорости перемешивания приводит к новым скачкообразным преобразованиям и в конечном счете к турбулентности. Турбулентность — парадигма для хаотического состояния.
Поведение сложных систем в реальном мире обычно находится одновременно под влиянием многих различных аттракторов; теория динамических систем описывает сложные реальные системы с помощью моделей той или иной степени сложности. В моделях главные скачкообразные изменения в поведении системы представлены бифуркациями. Последние появляются на фазовых портретах систем из-за изменения положения «рычагов управления» — значений критических параметров. Бифуркации моделируются как переход от одного типа аттракторов к другому, например от статического аттрактора к периодическому. Система, бывшая до того устойчивой, начинает осциллировать, а при переходе от периодического аттрактора к хаотическому поведение системы, совершавшей до того периодические колебания, становится хаотическим. Такие бифуркации, получившие название «мягких», составляют лишь одну из разновидностей фундаментальных изменений в поведении системы; помимо них существуют также «взрывные», или «катастрофические», бифуркации. Катастрофические бифуркации (катастрофы понимаются здесь в ином смысле, чем в повседневной жизни) представляют собой внезапное, «как гром среди ясного неба», появление или исчезновение статического, периодического или хаотического аттрактора. Бифуркации, обнаруженные специалистами по теории динамических систем, находят немаловажные приложения к системам реального мира. Мягкие бифуркации представляют собой нарастающую неустойчивость в системах, далеких от термодинамического равновесия. Система, например, система химических реакций, находящаяся в устойчивом равновесии, начинает совершать осцилляции; или колебательная система, типа химических часов, переходит в турбулентный режим. На своих математических моделях теория динамических систем устанавливает несколько «сценариев», ведущих от устойчивого равновесия к хаосу. Модели с катастрофическими бифуркациями, приводящими от турбулентного состояния к новым упорядоченным состояниям путем перестройки аттракторов, описывают эволюционные процессы в реальных системах, находящихся в третьем состоянии. Бифуркации — это те разновидности преобразований, которые лежат в основе эволюции всех типов реальных систем от атомов химических элементов до биологических видов и целых экологии и обществ.
В заключение